< < VS08 : VS09 : VS10 > >

VS09: Reduced Speed Zone Warning / Lane Closure

This service package provides connected vehicles that are approaching a reduced speed zone with information on the zone's posted speed limit and/or if the configuration of the roadway is altered (e.g., lane closures, lane shifts). Reduced speed zones include (but are not be limited to) construction/work zones, school zones, pedestrian crossing areas, and incorporated zones (e.g., rural towns). The connected vehicle uses the revised speed limit along with any applicable changed roadside configuration information to determine whether to provide an alert or warning to the driver. Additionally, to provide warnings to non-equipped vehicles, infrastructure equipment measures the speed of the approaching vehicles and if greater than the reduced speed zone posted speed limit will provide warning signage. It will provide an alert to drivers in advance when aggressive braking is required to reduce to the posted speed limit.

Relevant Regions: Australia, Canada, European Union, and United States

Enterprise

Development Stage Roles and Relationships

Installation Stage Roles and Relationships

Operations and Maintenance Stage Roles and Relationships
(hide)

Source Destination Role/Relationship
Basic Vehicle Maintainer Basic Vehicle Maintains
Basic Vehicle Manager Basic Vehicle Manages
Basic Vehicle Manager Driver System Usage Agreement
Basic Vehicle Owner Basic Vehicle Maintainer System Maintenance Agreement
Basic Vehicle Owner Basic Vehicle Manager Operations Agreement
Basic Vehicle Owner Driver Application Usage Agreement
Basic Vehicle Owner Driver Vehicle Operating Agreement
Basic Vehicle Owner Vehicle Maintainer Maintenance Data Exchange Agreement
Basic Vehicle Owner Vehicle Owner Expectation of Data Provision
Basic Vehicle Owner Vehicle User Service Usage Agreement
Basic Vehicle Supplier Basic Vehicle Owner Warranty
Connected Vehicle Roadside Equipment Maintainer Connected Vehicle Roadside Equipment Maintains
Connected Vehicle Roadside Equipment Manager Connected Vehicle Roadside Equipment Manages
Connected Vehicle Roadside Equipment Owner Connected Vehicle Roadside Equipment Maintainer System Maintenance Agreement
Connected Vehicle Roadside Equipment Owner Connected Vehicle Roadside Equipment Manager Operations Agreement
Connected Vehicle Roadside Equipment Owner Driver Application Usage Agreement
Connected Vehicle Roadside Equipment Owner Maint and Constr Management Center Maintainer Maintenance Data Exchange Agreement
Connected Vehicle Roadside Equipment Owner Maint and Constr Management Center Owner Information Exchange and Action Agreement
Connected Vehicle Roadside Equipment Owner Maint and Constr Management Center User Service Usage Agreement
Connected Vehicle Roadside Equipment Owner Traffic Management Center Maintainer Maintenance Data Exchange Agreement
Connected Vehicle Roadside Equipment Owner Traffic Management Center Owner Information Exchange and Action Agreement
Connected Vehicle Roadside Equipment Owner Traffic Management Center User Service Usage Agreement
Connected Vehicle Roadside Equipment Owner Vehicle Maintainer Maintenance Data Exchange Agreement
Connected Vehicle Roadside Equipment Owner Vehicle Owner Information Exchange and Action Agreement
Connected Vehicle Roadside Equipment Owner Vehicle User Service Usage Agreement
Connected Vehicle Roadside Equipment Supplier Connected Vehicle Roadside Equipment Owner Warranty
Driver Basic Vehicle Operates
Driver Vehicle Operates
ITS Roadway Equipment Maintainer ITS Roadway Equipment Maintains
ITS Roadway Equipment Manager ITS Roadway Equipment Manages
ITS Roadway Equipment Owner Connected Vehicle Roadside Equipment Maintainer Maintenance Data Exchange Agreement
ITS Roadway Equipment Owner Connected Vehicle Roadside Equipment Owner Information Exchange and Action Agreement
ITS Roadway Equipment Owner Connected Vehicle Roadside Equipment User Service Usage Agreement
ITS Roadway Equipment Owner ITS Roadway Equipment Maintainer System Maintenance Agreement
ITS Roadway Equipment Owner ITS Roadway Equipment Manager Operations Agreement
ITS Roadway Equipment Owner Maint and Constr Management Center Maintainer Maintenance Data Exchange Agreement
ITS Roadway Equipment Owner Maint and Constr Management Center Owner Information Exchange and Action Agreement
ITS Roadway Equipment Owner Maint and Constr Management Center User Service Usage Agreement
ITS Roadway Equipment Owner Traffic Management Center Maintainer Maintenance Data Exchange Agreement
ITS Roadway Equipment Owner Traffic Management Center Owner Information Exchange and Action Agreement
ITS Roadway Equipment Owner Traffic Management Center User Service Usage Agreement
ITS Roadway Equipment Supplier ITS Roadway Equipment Owner Warranty
Maint and Constr Management Center Maintainer Maint and Constr Management Center Maintains
Maint and Constr Management Center Manager Maint and Constr Management Center Manages
Maint and Constr Management Center Owner Connected Vehicle Roadside Equipment Maintainer Maintenance Data Exchange Agreement
Maint and Constr Management Center Owner Connected Vehicle Roadside Equipment Owner Information Provision Agreement
Maint and Constr Management Center Owner Connected Vehicle Roadside Equipment User Service Usage Agreement
Maint and Constr Management Center Owner ITS Roadway Equipment Maintainer Maintenance Data Exchange Agreement
Maint and Constr Management Center Owner ITS Roadway Equipment Owner Information Provision Agreement
Maint and Constr Management Center Owner ITS Roadway Equipment User Service Usage Agreement
Maint and Constr Management Center Owner Maint and Constr Management Center Maintainer System Maintenance Agreement
Maint and Constr Management Center Owner Maint and Constr Management Center Manager Operations Agreement
Maint and Constr Management Center Owner Traffic Management Center Maintainer Maintenance Data Exchange Agreement
Maint and Constr Management Center Owner Traffic Management Center Owner Information Exchange Agreement
Maint and Constr Management Center Owner Traffic Management Center User Service Usage Agreement
Maint and Constr Management Center Supplier Maint and Constr Management Center Owner Warranty
Traffic Management Center Maintainer Traffic Management Center Maintains
Traffic Management Center Manager Traffic Management Center Manages
Traffic Management Center Owner Connected Vehicle Roadside Equipment Maintainer Maintenance Data Exchange Agreement
Traffic Management Center Owner Connected Vehicle Roadside Equipment Owner Information Provision Agreement
Traffic Management Center Owner Connected Vehicle Roadside Equipment User Service Usage Agreement
Traffic Management Center Owner ITS Roadway Equipment Maintainer Maintenance Data Exchange Agreement
Traffic Management Center Owner ITS Roadway Equipment Owner Information Provision Agreement
Traffic Management Center Owner ITS Roadway Equipment User Service Usage Agreement
Traffic Management Center Owner Maint and Constr Management Center Maintainer Maintenance Data Exchange Agreement
Traffic Management Center Owner Maint and Constr Management Center Owner Information Exchange Agreement
Traffic Management Center Owner Maint and Constr Management Center User Service Usage Agreement
Traffic Management Center Owner Traffic Management Center Maintainer System Maintenance Agreement
Traffic Management Center Owner Traffic Management Center Manager Operations Agreement
Traffic Management Center Owner Transportation Information Center Maintainer Maintenance Data Exchange Agreement
Traffic Management Center Owner Transportation Information Center Owner Information Provision Agreement
Traffic Management Center Owner Transportation Information Center User Service Usage Agreement
Traffic Management Center Supplier Traffic Management Center Owner Warranty
Transportation Information Center Maintainer Transportation Information Center Maintains
Transportation Information Center Manager Transportation Information Center Manages
Transportation Information Center Owner Driver Application Usage Agreement
Transportation Information Center Owner Transportation Information Center Maintainer System Maintenance Agreement
Transportation Information Center Owner Transportation Information Center Manager Operations Agreement
Transportation Information Center Owner Vehicle Maintainer Maintenance Data Exchange Agreement
Transportation Information Center Owner Vehicle Owner Information Provision Agreement
Transportation Information Center Owner Vehicle User Service Usage Agreement
Transportation Information Center Supplier Transportation Information Center Owner Warranty
Vehicle Characteristics Maintainer Vehicle Characteristics Maintains
Vehicle Characteristics Manager Vehicle Characteristics Manages
Vehicle Characteristics Owner Vehicle Characteristics Maintainer System Maintenance Agreement
Vehicle Characteristics Owner Vehicle Characteristics Manager Operations Agreement
Vehicle Characteristics Supplier Vehicle Characteristics Owner Warranty
Vehicle Maintainer Vehicle Maintains
Vehicle Manager Driver System Usage Agreement
Vehicle Manager Vehicle Manages
Vehicle Owner Basic Vehicle Maintainer Maintenance Data Exchange Agreement
Vehicle Owner Basic Vehicle Owner Expectation of Data Provision
Vehicle Owner Basic Vehicle User Service Usage Agreement
Vehicle Owner Connected Vehicle Roadside Equipment Maintainer Maintenance Data Exchange Agreement
Vehicle Owner Connected Vehicle Roadside Equipment Owner Expectation of Data Provision
Vehicle Owner Connected Vehicle Roadside Equipment User Service Usage Agreement
Vehicle Owner Driver Application Usage Agreement
Vehicle Owner Driver Vehicle Operating Agreement
Vehicle Owner Vehicle Maintainer System Maintenance Agreement
Vehicle Owner Vehicle Manager Operations Agreement
Vehicle Supplier Vehicle Owner Warranty

Functional

This service package includes the following Functional View PSpecs:

Physical Object Functional Object PSpec Number PSpec Name
Connected Vehicle Roadside Equipment RSE Speed Warning 1.1.1.6 Collect Vehicle Roadside Safety Data
1.1.2.6 Process Collected Vehicle Safety Data
1.1.6 Collect Vehicle Traffic Surveillance Data
1.1.7 Collect Vehicle Environmental Data
1.2.7.4 Process In-vehicle Signage Data
1.2.7.7 Process Vehicle Safety and Environmental Data for Output
6.7.3.5 Provide Short Range Traveler Information
9.2.3.8 Collect Connected Vehicle Field Equipment Status
ITS Roadway Equipment Roadway Speed Monitoring and Warning 1.1.1.1 Process Traffic Sensor Data
1.2.7.9 Process Roadway Information Data
9.2.3.6 Collect Field Equipment Status for Repair
9.3.3.1 Collect Vehicle Speed
9.3.3.4 Support Vehicle Speed Enforcement
Maint and Constr Management Center MCM Reduced Speed Zone Warning 9.2.3.5 Collect Roadside Equipment Status
9.2.5 Provide M&C Center Personnel Interface for Maint
9.3.1.1 Operate Work Zone Devices
9.3.2.3 Generate Work Zone Information for Distribution
9.3.3.2 Monitor Vehicle Speed in Work Zone
Traffic Management Center TMC Speed Warning 1.1.2.5 Process Vehicle Situation Data
1.2.4.3 Output In-vehicle Signage Data
1.2.4.4 Output Roadway Information Data
1.2.6.1 Maintain Traffic and Sensor Static Data
1.2.6.2 Provide Static Data Store Output Interface
1.2.8 Collect Traffic Field Equipment Fault Data
9.3.3.3 Manage Vehicle Speed on Roadway
Transportation Information Center TIC Traffic Control Dissemination 6.2.2 Collect Traffic Data
6.5.1 Provide Broadcast Data Interface
Vehicle Vehicle Basic Safety Communication 3.1.1 Produce Collision and Crash Avoidance Data
3.1.3 Process Vehicle On-board Data
3.1.4 Communicate with Remote Vehicles
3.1.6 Provide Vehicle Acceleration and Deceleration Inputs
3.2.3.2 Manage Platoon Following
3.2.3.3 Process Data for Vehicle Actuators
3.2.3.5 Process Vehicle Sensor Data
3.2.4 Process Sensor Data for Automatic Vehicle Operations
6.7.1.2 Provide Driver Guidance Interface
6.7.1.3 Process Vehicle Location Data
6.7.1.4 Update Vehicle Navigable Map Database
6.7.3.3 Provide Driver Information Interface
Vehicle Speed Management Assist 3.1.3 Process Vehicle On-board Data
6.7.1.3 Process Vehicle Location Data
6.7.1.4 Update Vehicle Navigable Map Database
6.7.3.2 Provide Driver with Personal Travel Information
6.7.3.3 Provide Driver Information Interface
Vehicle Traveler Information Reception 3.1.3 Process Vehicle On-board Data
3.1.4 Communicate with Remote Vehicles
3.2.3.3 Process Data for Vehicle Actuators
6.7.1.2 Provide Driver Guidance Interface
6.7.1.3 Process Vehicle Location Data
6.7.1.4 Update Vehicle Navigable Map Database
6.7.3.1 Get Driver Personal Request
6.7.3.2 Provide Driver with Personal Travel Information
6.7.3.3 Provide Driver Information Interface
7.1.4 Provide Driver Toll Payment Interface

Physical

The physical diagram can be viewed in SVG or PNG format and the current format is SVG.
SVG Diagram
PNG Diagram


Display Legend in SVG or PNG

Includes Physical Objects:

Physical Object Class Description
Basic Vehicle Vehicle 'Basic Vehicle' represents a complete operating vehicle. It includes the vehicle platform that interfaces with and hosts ITS electronics and all of the driver convenience and entertainment systems, and other non-ITS electronics on-board the vehicle. Interfaces represent both internal on-board interfaces between ITS equipment and other vehicle systems and other passive and active external interfaces or views of the vehicle that support vehicle/traffic monitoring and management. External interfaces may also represent equipment that is carried into the vehicle (e.g., a smartphone that is brought into the vehicle). Internal interfaces are often implemented through a vehicle databus, which is also included in this object. Note that 'Vehicle' represents the general functions and interfaces that are associated with personal automobiles as well as commercial vehicles, emergency vehicles, transit vehicles, and other specialized vehicles.
Connected Vehicle Roadside Equipment Field 'Connected Vehicle Roadside Equipment' (CV RSE) represents the Connected Vehicle roadside devices that are used to send messages to, and receive messages from, nearby vehicles using Dedicated Short Range Communications (DSRC) or other alternative wireless communications technologies. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers.
Driver Vehicle The 'Driver' represents the person that operates a vehicle on the roadway. Included are operators of private, transit, commercial, and emergency vehicles where the interactions are not particular to the type of vehicle (e.g., interactions supporting vehicle safety applications). The Driver originates driver requests and receives driver information that reflects the interactions which might be useful to all drivers, regardless of vehicle classification. Information and interactions which are unique to drivers of a specific vehicle type (e.g., fleet interactions with transit, commercial, or emergency vehicle drivers) are covered by separate objects.
ITS Roadway Equipment Field 'ITS Roadway Equipment' represents the ITS equipment that is distributed on and along the roadway that monitors and controls traffic and monitors and manages the roadway. This physical object includes traffic detectors, environmental sensors, traffic signals, highway advisory radios, dynamic message signs, CCTV cameras and video image processing systems, grade crossing warning systems, and ramp metering systems. Lane management systems and barrier systems that control access to transportation infrastructure such as roadways, bridges and tunnels are also included. This object also provides environmental monitoring including sensors that measure road conditions, surface weather, and vehicle emissions. Work zone systems including work zone surveillance, traffic control, driver warning, and work crew safety systems are also included.
Maint and Constr Management Center Center The 'Maint and Constr Management Center' monitors and manages roadway infrastructure construction and maintenance activities. Representing both public agencies and private contractors that provide these functions, this physical object manages fleets of maintenance, construction, or special service vehicles (e.g., snow and ice control equipment). The physical object receives a wide range of status information from these vehicles and performs vehicle dispatch, routing, and resource management for the vehicle fleets and associated equipment. The physical object participates in incident response by deploying maintenance and construction resources to an incident scene, in coordination with other center physical objects. The physical object manages equipment at the roadside, including environmental sensors and automated systems that monitor and mitigate adverse road and surface weather conditions. It manages the repair and maintenance of both non-ITS and ITS equipment including the traffic controllers, detectors, dynamic message signs, signals, and other equipment associated with the roadway infrastructure. Weather information is collected and fused with other data sources and used to support advanced decision support systems.

The physical object remotely monitors and manages ITS capabilities in work zones, gathering, storing, and disseminating work zone information to other systems. It manages traffic in the vicinity of the work zone and advises drivers of work zone status (either directly at the roadside or through an interface with the Transportation Information Center or Traffic Management Center physical objects.)

Construction and maintenance activities are tracked and coordinated with other systems, improving the quality and accuracy of information available regarding closures and other roadway construction and maintenance activities.
Traffic Management Center Center The 'Traffic Management Center' monitors and controls traffic and the road network. It represents centers that manage a broad range of transportation facilities including freeway systems, rural and suburban highway systems, and urban and suburban traffic control systems. It communicates with ITS Roadway Equipment and Connected Vehicle Roadside Equipment (RSE) to monitor and manage traffic flow and monitor the condition of the roadway, surrounding environmental conditions, and field equipment status. It manages traffic and transportation resources to support allied agencies in responding to, and recovering from, incidents ranging from minor traffic incidents through major disasters.
Transportation Information Center Center The 'Transportation Information Center' collects, processes, stores, and disseminates transportation information to system operators and the traveling public. The physical object can play several different roles in an integrated ITS. In one role, the TIC provides a data collection, fusing, and repackaging function, collecting information from transportation system operators and redistributing this information to other system operators in the region and other TICs. In this information redistribution role, the TIC provides a bridge between the various transportation systems that produce the information and the other TICs and their subscribers that use the information. The second role of a TIC is focused on delivery of traveler information to subscribers and the public at large. Information provided includes basic advisories, traffic and road conditions, transit schedule information, yellow pages information, ride matching information, and parking information. The TIC is commonly implemented as a website or a web-based application service, but it represents any traveler information distribution service.
Vehicle Vehicle This 'Vehicle' physical object is used to model core capabilities that are common to more than one type of Vehicle. It provides the vehicle-based general sensory, processing, storage, and communications functions that support efficient, safe, and convenient travel. Many of these capabilities (e.g., see the Vehicle Safety service packages) apply to all vehicle types including personal vehicles, commercial vehicles, emergency vehicles, transit vehicles, and maintenance vehicles. From this perspective, the Vehicle includes the common interfaces and functions that apply to all motorized vehicles. The radio(s) supporting V2V and V2I communications are a key component of the Vehicle. Both one-way and two-way communications options support a spectrum of information services from basic broadcast to advanced personalized information services. Advanced sensors, processors, enhanced driver interfaces, and actuators complement the driver information services so that, in addition to making informed mode and route selections, the driver travels these routes in a safer and more consistent manner. This physical object supports all six levels of driving automation as defined in SAE J3016. Initial collision avoidance functions provide 'vigilant co-pilot' driver warning capabilities. More advanced functions assume limited control of the vehicle to maintain lane position and safe headways. In the most advanced implementations, this Physical Object supports full automation of all aspects of the driving task, aided by communications with other vehicles in the vicinity and in coordination with supporting infrastructure subsystems.
Vehicle Characteristics Vehicle 'Vehicle Characteristics' represents the external view of individual vehicles of any class from cars and light trucks up to large commercial vehicles and down to micromobility vehicles (MMVs). It includes vehicle physical characteristics such as height, width, length, weight, and other properties (e.g., magnetic properties, number of axles) of individual vehicles that can be sensed and measured or classified. This physical object represents the physical properties of vehicles that can be sensed by vehicle-based or infrastructure-based sensors to support vehicle automation and traffic sensor systems. The analog properties provided by this terminator represent the sensor inputs that are used to detect and assess vehicle(s) within the sensor's range to support safe AV operation and/or responsive and safe traffic management.

Includes Functional Objects:

Functional Object Description Physical Object
MCM Reduced Speed Zone Warning 'MCM Reduced Speed Zone Warning' supports remote control and monitoring of reduced speed zone warning roadside equipment. It provides posted speed limits and associated schedules and information about associated road configuration changes including lane merges and shifts. It monitors field equipment operation and reports current status to the operator. Maint and Constr Management Center
Roadway Speed Monitoring and Warning 'Roadway Speed Monitoring and Warning' includes the field elements that monitor vehicle speeds. If the speed is determined to be excessive, an advisory or warning is displayed. Current environmental conditions and other factors that may reduce safe operating speeds may also be taken into account. The operational status (state of the device, configuration, and fault data) is provided to the center. This application can also provide an enforcement function, reporting speed violations to an enforcement agency. ITS Roadway Equipment
RSE Speed Warning 'RSE Speed Warning' notifies connected vehicles that are approaching a reduced speed zone, providing: (1) the zone's current posted speed limit and (2) any roadway configuration changes associated with the reduced speed zone (e.g., lane closures, lane shifts) if applicable, and (3) associated warning information (i.e., the reason for the reduced speed warning). Configuration parameters that define the applicable speed limit(s), geographic location and extent of the reduced speed zone, and roadway configuration information are received from a center or provided through a local interface. The characteristics of individual vehicles may also be monitored and used to warn vehicles with specific limitations that reduce safe operating speeds, (e.g., rollover risk for tall vehicles). This functional object works in conjunction with the 'Roadway Speed Monitoring and Warning' functional object, which uses traditional ITS field equipment to warn non-equipped vehicles. Connected Vehicle Roadside Equipment
TIC Traffic Control Dissemination 'TIC Traffic Control Dissemination' disseminates intersection status, lane control information, and other traffic control related information that is real-time or near real-time in nature and relevant to vehicles in a relatively local area on the road network. It collects traffic control information from Traffic Management Center(s) and disseminates the relevant information to vehicles and other mobile devices. Transportation Information Center
TMC Speed Warning 'TMC Speed Warning' supports remote control and monitoring of reduced speed zone warning roadside equipment. It provides the location and extent of the reduced speed zone, the posted speed limit(s) with information about the applicability of the speed limit(s) (e.g., time of day, day of week, seasonality, relevant vehicle types) and information about associated road configuration changes including lane merges and shifts. It monitors field equipment operation and reports current status to the operator. Traffic Management Center
Vehicle Basic Safety Communication 'Vehicle Basic Safety Communication' exchanges current vehicle location and motion information with other vehicles in the vicinity, uses that information to calculate vehicle paths, and warns the driver when the potential for an impending collision is detected. If available, map data is used to filter and interpret the relative location and motion of vehicles in the vicinity. Information from on-board sensors (e.g., radars and image processing) are also used, if available, in combination with the V2V communications to detect non-equipped vehicles and corroborate connected vehicle data. Vehicle location and motion broadcasts are also received by the infrastructure and used by the infrastructure to support a wide range of roadside safety and mobility applications. This object represents a broad range of implementations ranging from basic Vehicle Awareness Devices that only broadcast vehicle location and motion and provide no driver warnings to advanced integrated safety systems that may, in addition to warning the driver, provide collision warning information to support automated control functions that can support control intervention. Vehicle
Vehicle Speed Management Assist 'Vehicle Speed Management Assist' assists the driver in operating the vehicle within the current speed limit. It monitors current vehicle speed and communicates with the infrastructure to receive current speed limits and associated road configuration change notifications. Driver warnings are issued when unsafe or excessive speeds are detected based on the provided speed limits and current conditions. Vehicle
Vehicle Traveler Information Reception 'Vehicle Traveler Information Reception' receives advisories, vehicle signage data, and other driver information of use to all types of vehicles and drivers and presents this information to the driver using in-vehicle equipment. Information presented may include fixed sign information, traffic control device status (e.g., signal phase and timing data), advisory and detour information, warnings of adverse road and weather conditions, travel times, and other driver information. Vehicle

Includes Information Flows:

Information Flow Description
driver information Regulatory, warning, guidance, and other information provided to the driver to support safe and efficient vehicle operation.
driver input Driver input to the vehicle on-board equipment including configuration data, settings and preferences, interactive requests, and control commands.
driver input information Driver input received from the driver-vehicle interface equipment via the vehicle bus. It includes configuration data, settings and preferences, interactive requests, and control commands for the connected vehicle on-board equipment.
driver update information Information provided to the driver-vehicle interface to inform the driver about current conditions, potential hazards, and the current status of vehicle on-board equipment. The flow includes the information to be presented to the driver and associated metadata that supports processing, prioritization, and presentation by the DVI as visual displays, audible information and warnings, and/or haptic feedback.
driver updates Information provided to the driver including visual displays, audible information and warnings, and haptic feedback. The updates inform the driver about current conditions, potential hazards, and the current status of vehicle on-board equipment.
field device coordination Coordination between operating centers that share control of the same field devices. This flow supports coordination to prevent conflicts and allow cooperative management of shared devices.
host vehicle status Information provided to the ITS on-board equipment from other systems on the vehicle platform. This includes the current status of the powertrain, steering, and braking systems, and status of other safety and convenience systems. In implementations where GPS is not integrated into the Vehicle On-Board Equipment, the host vehicle is also the source for data describing the vehicle's location in three dimensions (latitude, longitude, elevation) and accurate time that can be used for time synchronization across the ITS environment.
lane closure information Lane closure information provided to passing vehicles. This flow provides information about roadway configuration changes such as lane closures and shifts.
reduced speed notification Reduced speed zone information provided to passing vehicles. This flow provides the reduced speed limit, the location and extent of the reduced speed zone, and associated warning information.
reduced speed warning info Real time notification of vehicle detections, measured vehicle characteristics (e.g., vehicle height), speed measurements, and warnings issued by roadway infrastructure. This flow can also include roadway configuration data, current speed limits, and warning parameters and thresholds enabling local speed management application configuration and management.
roadway dynamic signage data Information used to initialize, configure, and control dynamic message signs. This flow can provide message content and delivery attributes, local message store maintenance requests, control mode commands, status queries, and all other commands and associated parameters that support remote management of these devices.
roadway dynamic signage status Current operating status of dynamic message signs.
speed monitoring control Information used to configure and control automated speed monitoring, speed warning, and speed enforcement systems.
speed monitoring information System status including current operational state and logged information including measured speeds, warning messages displayed, and violation records.
speed warning application info Roadway configuration data, current speed limits including time of day, week, or season speed limits as necessary, and warning parameters and thresholds. This flow also supports remote control of the application so the application can be taken offline, reset, or restarted.
speed warning application status Speed warning application status reported by the RSE. This includes current operational state and status of the RSE and a record of measured vehicle speeds and notifications, alerts, and warnings issued.
vehicle characteristics The physical or visible characteristics of individual vehicles that can be used to detect, classify, and monitor vehicles and imaged to uniquely identify vehicles.
vehicle location and motion for surveillance Data describing the vehicle's location in three dimensions, heading, speed, acceleration, braking status, and size. This flow represents monitoring of basic safety data ('vehicle location and motion') broadcast by passing connected vehicles for use in vehicle detection and traffic monitoring applications.

Goals and Objectives

Associated Planning Factors and Goals

Planning Factor Goal
A. Support the economic vitality of the metropolitan area, especially by enabling global competitiveness, productivity, and efficiency; Improve freight network
B. Increase the safety of the transportation system for motorized and nonmotorized users; Reduce fatalities and injuries
D. Increase the accessibility and mobility of people and for freight; Reduce congestion
E. Protect and enhance the environment, promote energy conservation, improve the quality of life, and promote consistency between transportation improvements and State and local planned growth and economic development patterns; Protect/Enhance the Environment
G. Promote efficient system management and operation; Improve efficiency
I. Improve the resiliency and reliability of the transportation system and reduce or mitigate stormwater impacts of surface transportation; Improve resiliency and reliability

Associated Objective Categories

Objective Category
Arterial Management: Reliability
Emergency/Incident Management: Person Hours of Delay
Freeway Management: Efficiency
Freeway Management: Reliability
Safety: Vehicle Crashes and Fatalities
System Efficiency: Cost of Congestion
System Efficiency: Delay
System Efficiency: Energy Consumption
System Efficiency: Intensity of Congestion (Travel Time Index)
System Efficiency: Travel Time
System Reliability: Non-Recurring Delay
System Reliability: Travel Time 90th/95th Percentile
System Reliability: Travel Time Buffer Index
System Reliability: Variability

Associated Objectives and Performance Measures

Objective Performance Measure
Annual rate of change in regional average commute travel time will not exceed regional rate of population growth through the year Y. Average commute trip travel time (minutes).
Decrease the average buffer index for (multiple routes or trips) by X percent over Y years. The buffer index represents the extra time (buffer) most travelers add to their average travel time when planning trips. This is the extra time between the average travel time and near-worst case travel time (95th percentile). The buffer index is stated as a percentage of the average travel time. Average buffer index or buffer time can be calculated using miles traveled as a weighting factor. Buffer time = 95th percentile travel time (min) – average travel time (min).
Decrease the buffer index for (specific travel routes) by X percent over the next Y years. The buffer index represents the extra time (buffer) most travelers add to their average travel time when planning trips. This is the extra time between the average travel time and near-worst case travel time (95th percentile). The buffer index is stated as a percentage of the average travel time. Average buffer index or buffer time can be calculated using miles traveled as a weighting factor. Buffer time = 95th percentile travel time (min) – average travel time (min).
Improve average travel time during peak periods by X percent by year Y. Average travel time during peak periods (minutes).
Reduce buffer index on the freeway system during peak and off-peak periods by X percent in Y years. The buffer index (represents the extra time (buffer) travelers add to their average travel time when planning trips in order to arrive on-time 95 percent of the time).
Reduce crashes at intersections Number of crashes and fatalities at signalized intersections
Reduce crashes at intersections Number of crashes and fatalities at unsignalized intersections
Reduce crashes at intersections Number of crashes and fatalities related to red-light running
Reduce crashes at railroad crossings Number of crashes and fatalities at railroad crossings
Reduce crashes due to driver errors and limitations Number of crashes and fatalities related to driver inattention and distraction
Reduce crashes due to driver errors and limitations Number of crashes and fatalities related to driving while intoxicated
Reduce crashes due to red-light running Number of crashes and fatalities related to red-light running
Reduce crashes due to road weather conditions Number of crashes and fatalities related to weather conditions
Reduce crashes due to unexpected congestion Number of crashes and fatalities related to unexpected congestion
Reduce crashes due to unsafe drivers, vehicles and cargo on the transportation system Number of crashes and fatalities due to commercial vehicle safety violations
Reduce delay associated with incidents on arterials by X percent by year Y. Hours of delay associated with incidents.
Reduce delay associated with incidents on the freeway system by X percent by year Y. Hours of delay associated with incidents.
Reduce excess fuel consumed due to congestion by X percent by year Y. Excess fuel consumed (total or per capita).
Reduce hours of delay per capita by X percent by year Y. Hours of delay (person-hours).
Reduce hours of delay per capita by X percent by year Y. Hours of delay per capita.
Reduce hours of delay per driver by X percent by year Y. Hours of delay (person-hours).
Reduce hours of delay per driver by X percent by year Y. Hours of delay per driver.
Reduce lane departure crashes Number of crashes and fatalities related to inappropriate lane departure, crossing or merging
Reduce secondary crashes Number of secondary crashes
Reduce speed differential Number of crashes and fatalities related to excessive speeding
Reduce speed differential Number of speed violations
Reduce the 90th (or 95th) percentile travel times for each route selected by X percent over Y years. 95th or 90th percentile travel times for selected routes.
Reduce the annual monetary cost of congestion per capita for the next X years. Cost (in dollars) of congestion or delay per capita.
Reduce the average buffer time needed to arrive on-time for 95 percent of trips on (specified routes) by X minutes over Y years. The buffer index represents the extra time (buffer) most travelers add to their average travel time when planning trips. This is the extra time between the average travel time and near-worst case travel time (95th percentile). The buffer index is stated as a percentage of the average travel time. Average buffer index or buffer time can be calculated using miles traveled as a weighting factor. Buffer time = 95th percentile travel time (min) – average travel time (min).
Reduce the average of the 90th (or 95th) percentile travel times for (a group of specific travel routes or trips in the region) by X minutes in Y years. 95th or 90th percentile travel times for selected routes.
Reduce the number of fatalities in crashes involving a driver or motorcycle operator with a BAC of.08 and above by X percent by Y year. Number of fatalities in crashes involving a driver or motorcycle operator with a BAC of.08 and above
Reduce the number of motorcyclist fatalities by X percent by year Y. Number of motorcyclist fatalities
Reduce the number of pedestrian fatalities by X percent by year Y. Number of pedestrian fatalities
Reduce the number of person hours (or vehicle hours) of delay experienced by travelers on the freeway system. Hours of delay (vehicle-hours or person-hours).
Reduce the number of person hours (or vehicle hours) of delay experienced by travelers on the freeway system. Hours of delay per capita or driver.
Reduce the number of speeding-related fatalities by X percent by year Y. Number of speeding-related fatalities
Reduce the person hours (or vehicle hours) of total delay associated with traffic incidents by X percent over Y years. Person hours (or vehicle hours) of delay associated with traffic incidents.
Reduce the rate fatalities in the region by X percent by year Y. Rate of fatalities (rate per vehicle miles travelled (VMT))
Reduce the rate of severe injuries in the region by X percent by year Y. Rate of serious injuries (rate per VMT)
Reduce the regional average travel time index by X percent per year. Travel time index (the average travel time during the peak period, using congested speeds, divided by the off-peak period travel time, using posted or free-flow speeds).
Reduce the share of freeway miles at Level of Service (LOS) X by Y by year Z. Miles at LOS X or V/C > 1.0 (or other threshold).
Reduce the total number of crashes in the region by X percent by year Y. Total crashes per X VMT.
Reduce the total number of fatalities and severe injuries in the region by X percent by year Y. Total fatalities per X VMT.
Reduce the total number of fatalities and severe injuries in the region by X percent by year Y. Total severe injuries per X VMT.
Reduce the total number of fatalities in the region by X percent by year Y. Number of fatalities
Reduce the total number of severe injuries in the region by X percent by year Y. Number of serious injuries
Reduce the variability of travel time on specified routes by X percent during peak and off-peak periods by year Y. Variance of travel time. Variance is the sum of the squared deviations from the mean. This can also be calculated as the standard deviation of travel time. Standard deviation is the square root of variance.
Reduce total energy consumption per capita for transportation by X percent by year Y. Total energy consumed per capita for transportation.
Reduce total fuel consumption per capita for transportation by X percent by year Y. Total fuel consumed per capita for transportation.
Reduce total person hours of delay (or travel-time delay per capita) by time period (peak, off-peak) caused by all transient events such as traffic incidents, special events, and work zones. Total person hours of delay during scheduled and/or unscheduled disruptions to travel.
Reduce total person hours of delay (or travel-time delay per capita) by time period (peak, off-peak) caused by scheduled events, work zones, or system maintenance by x hours in y years. Travel time delay during scheduled and/or unscheduled disruptions to travel.
Reduce total person hours of delay (or travel-time delay per capita) by time period (peak, off-peak) caused by unscheduled disruptions to travel. Total person hours of delay during scheduled and/or unscheduled disruptions to travel.


 
Since the mapping between objectives and service packages is not always straight-forward and often situation-dependent, these mappings should only be used as a starting point. Users should do their own analysis to identify the best service packages for their region.

Needs and Requirements

Need Functional Object Requirement
01 Traffic Operations or Maintenance Operations need to be able to provide to Connected Vehicles information about speed reductions, lane closures or roadway configuration changes. RSE Speed Warning 03 The field element shall provide vehicles with about speed reductions, lane closures or roadway configuration changes.
Vehicle Traveler Information Reception 26 The vehicle shall receive information about reduced road speed or lane closures from a center or from connected vehicle roadside equipment.
02 Traffic Operations or Maintenance Operations need to be able to warn connected vehicles that they are driving above the posted reduced speed zone speed limit and/or the vehicle is impacted by changed roadway configurations in order for the connected vehicle to take appropriate action. MCM Reduced Speed Zone Warning 02 The center shall provide reduced speed zone posted speed limits and associated schedules and information about associated road configuration changes including lane merges and shifts for display on roadside devices.
03 The center shall provide to roadside equipment, for transmittal to connected vehicles, reduced speed zone posted speed limits and associated schedules and information about associated road configuration changes including lane merges and shifts.
RSE Speed Warning 01 The field element shall provide the reduced speed zone current posted speed limit as established by the controlling center and any roadway configuration changes associated with the reduced speed zone (e.g., lane closures, lane shifts).
TIC Traffic Control Dissemination 04 The center shall provide target speed limit, speed advisories, and/or speed limit information to vehicle.
TMC Speed Warning 04 The center shall control reduced speed zone warning roadside equipment, providing the location and extent of the reduced speed zone, the posted speed limit(s) with information about the applicability of the speed limit(s) (e.g., time of day, day of week, seasonality, relevant vehicle types) and information about associated road configuration changes including lane merges and shifts.
03 Drivers need to be able to receive warnings that the vehicle is approaching a reduced speed limit zone or that there are lane closures or roadway configuration changes in the upcoming roadway. Roadway Speed Monitoring and Warning 03 If the speed detected by vehicle speed sensors is determined to be excessive, the field element shall provide a safe speed advisory to passing drivers via a driver information system (such as portable messages signs, field to vehicle communications to in-vehicle signing systems, etc.).
TIC Traffic Control Dissemination 01 The center shall provide intersection status, lane control information, and other real time traffic control related information to vehicles.
Vehicle Speed Management Assist 03 The vehicle shall receive lane closure warnings from the roadside field equipment.
Vehicle Traveler Information Reception 26 The vehicle shall receive information about reduced road speed or lane closures from a center or from connected vehicle roadside equipment.

Related Sources

Document Name Version Publication Date
ITS User Services Document 1/1/2005
V2I Performance Requirements Draft 3/12/2014
Vehicle-to-Infrastructure (V2I) Safety Applications Concept of Operation Document Draft 8/10/2012
Vehicle-to-Infrastructure (V2I) Safety Applications System Requirements Document Final 3/8/2013


Security

In order to participate in this service package, each physical object should meet or exceed the following security levels.

Physical Object Security
Physical Object Confidentiality Integrity Availability Security Class
Basic Vehicle  
Connected Vehicle Roadside Equipment Moderate Moderate Moderate Class 2
ITS Roadway Equipment Moderate Moderate Moderate Class 2
Maint and Constr Management Center Moderate High Moderate Class 3
Traffic Management Center Moderate High Moderate Class 3
Transportation Information Center Low Moderate Moderate Class 1
Vehicle Low Moderate Moderate Class 1
Vehicle Characteristics  



In order to participate in this service package, each information flow triple should meet or exceed the following security levels.

Information Flow Security
Source Destination Information Flow Confidentiality Integrity Availability
Basis Basis Basis
Basic Vehicle Vehicle driver input information Moderate High High
Internal vehicle flow that if reverse engineered could enable third party vehicle control. Largely a competitive question, could be set LOW if manufacturer and operator are not concerned with this type of compromise. Includes vehicle control commands, which must be timely and accurate to support safe vehicle operation. Includes vehicle control commands, which must be timely and accurate to support safe vehicle operation.
Basic Vehicle Vehicle host vehicle status Low Moderate High
Unlikely that this includes any information that could be used against the originator. This can be MODERATE or HIGH, depending on the application: This is used later on to determine whether a vehicle is likely going to violate a red light or infringe a work zone. This needs to be correct in order for the application to work correctly. Since this monitors the health and safety of the vehicle and that information is eventually reported to the driver, it should be available at all times as it directly affects vehicle and operator safety.
Connected Vehicle Roadside Equipment Maint and Constr Management Center speed warning application status Moderate Moderate Low
This information could be of interest to a malicious individual who is attempting to determine the best way to accomplish a crime. As such it would be best to not make it easily accessible. DISC: THEA and WYO believe his information is directly observable and thus LOW. If this is compromised, it could send unnecessary maintenance workers, or cause the appearance of excessive traffic violations, leading to further unnecessary investigation. A delay in reporting this may cause a delay in necessary maintenance, but (a) this is not time-critical and (b) there are other channels for reporting malfunctioning. Additionally, there is a message received notification, which means that RSE can ensure that all intersection safety issues are delivered. DISC: WYO believes this to be MODERATE.
Connected Vehicle Roadside Equipment Traffic Management Center speed warning application status Moderate Moderate Low
This information could be of interest to a malicious individual who is attempting to determine the best way to accomplish a crime. As such it would be best to not make it easily accessible. DISC: THEA and WYO believe his information is directly observable and thus LOW. If this is compromised, it could send unnecessary maintenance workers, or cause the appearance of excessive traffic violations, leading to further unnecessary investigation. A delay in reporting this may cause a delay in necessary maintenance, but (a) this is not time-critical and (b) there are other channels for reporting malfunctioning. Additionally, there is a message received notification, which means that RSE can ensure that all intersection safety issues are delivered. DISC: WYO believes this to be MODERATE.
Connected Vehicle Roadside Equipment Vehicle lane closure information Low Moderate Low
Lane closure information is intended for broadcast and public consumption. Data should be consistent with observed reality, so it should be protected appropriately, otherwisee users may lose confidence in and ignore this flow in the future. While useful, this information is available through a variety of means.
Connected Vehicle Roadside Equipment Vehicle reduced speed notification Low Moderate Moderate
Seeing the broadcasted message on current reduced speed limit should not cause harm as this is sent to all nearby vehicles to notify of reduced speed limits message should not be tampered with; could increase physical risk to the driver and other drivers on the road if not warned with the correct information need immediate availability for the driver to react but cannot guarantee wireless communication
Driver Vehicle driver input Moderate High High
Data included in this flow may include origin and destination information, which should be protected from other's viewing as it may compromise the driver's privacy. Commands from from the driver to the vehicle must be correct or the vehicle may behave in an unpredictable and possibly unsafe manner Commands must always be able to be given or the driver has no control.
ITS Roadway Equipment Connected Vehicle Roadside Equipment reduced speed warning info Not Applicable Moderate Moderate
This data is intentionally transmitted to everyone via a broadcast. It can also be determined via other visual indicators. This information should be accurate, but an incorrect information should not have a direct impact causing the loss of life or limb. The system should be able to operate properly if it misses a few messages. If a message is not received, the ITS RE should know.
ITS Roadway Equipment Driver driver information Not Applicable High Moderate
This data is sent to all drivers and is also directly observable, by design. This is the primary signal trusted by the driver to decide whether to go through the intersection and what speed to go through the intersection at; if it's wrong, accidents could happen. If the lights are out you have to get a policeman to direct traffic – expensive and inefficient and may cause a cascading effect due to lack of coordination with other intersections.
ITS Roadway Equipment Maint and Constr Management Center roadway dynamic signage status Moderate Moderate Moderate
Device status information should not be available, as those with criminal intent may use this information toward their own ends. Data is intended to feed dissemination channels, either C-ITS messages or DMS or other channels, so it should generally be correct as it is distributed widely and any forgery or corrupted data will have widespread impact. Failure of this flow affects traveler information dissemination, the importance of which varies with the data contained in the flow and the scenario. Could be LOW in many instances.
ITS Roadway Equipment Maint and Constr Management Center speed monitoring information Moderate Moderate Moderate
Device status information should be concealed, as an unauthorized observer could use this to reverse engineer device control systems. Device status information needs to be available and correct, or the controlling system may take inappropriate maintenance action, costing time and money. Device status information needs to be available and correct, or the controlling system may take inappropriate maintenance action, costing time and money.
ITS Roadway Equipment Traffic Management Center roadway dynamic signage status Moderate Moderate Moderate
Device status information should not be available, as those with criminal intent may use this information toward their own ends. Data is intended to feed dissemination channels, either C-ITS messages or DMS or other channels, so it should generally be correct as it is distributed widely and any forgery or corrupted data will have widespread impact. Failure of this flow affects traveler information dissemination, the importance of which varies with the data contained in the flow and the scenario. Could be LOW in many instances.
ITS Roadway Equipment Traffic Management Center speed monitoring information Moderate Moderate Moderate
encrypted, authenticated, violation records included info that should not be tampered with, especially violation records and operational state but the rest is aggregate info want updates but outdated information will not be catastrophic; would want to know about the speeds, warnings, etc. to be able to reconfigure speed warning info as necessary
Maint and Constr Management Center Connected Vehicle Roadside Equipment speed warning application info Moderate High Moderate
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Maint and Constr Management Center ITS Roadway Equipment roadway dynamic signage data Moderate Moderate Moderate
Device control information should not be available, as those with criminal intent may use this information toward their own ends. Data is intended to feed dissemination channels, either C-ITS messages or DMS or other channels, so it should generally be correct as it is distributed widely and any forgery or corrupted data will have widespread impact. Occasional outages of this flow will delay dissemination of the data to travelers (the eventual end user) which could have significant impacts on travel, both safety and mobility impacts.
Maint and Constr Management Center ITS Roadway Equipment speed monitoring control Moderate High Low
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Maint and Constr Management Center Traffic Management Center field device coordination Low Moderate Moderate
There should be little harm to come from knowing who controls what field device in most instances. For security monitoring objects such as security cameras this might be MODERATE, but the flow is marked as low since it is unlikely that those kinds of objects have shared control. If this flow is incorrect or manipulated then an unauthorized party may be able to gain control of a device, which can have significant effects. This is not a control flow however, so actual control is unlikely, thus MODERATE. Depends on the sharing arrangement, but generally interfaces between centers should provide timely response to enable proper decision making and action.
Traffic Management Center Connected Vehicle Roadside Equipment speed warning application info Moderate High Moderate
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. info needs to be correct to issue correct speed limit and warnings or could cause driver confusion and delays or unsafe speed if compromised want updates but outdated information will not be catastrophic; should be able to operate on previous or default information
Traffic Management Center ITS Roadway Equipment roadway dynamic signage data Moderate Moderate Moderate
Device control information should not be available, as those with criminal intent may use this information toward their own ends. Data is intended to feed dissemination channels, either C-ITS messages or DMS or other channels, so it should generally be correct as it is distributed widely and any forgery or corrupted data will have widespread impact. Occasional outages of this flow will delay dissemination of the data to travelers (the eventual end user) which could have significant impacts on travel, both safety and mobility impacts.
Traffic Management Center ITS Roadway Equipment speed monitoring control Moderate High Moderate
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. From THEA: encrypted, authenticated, proprietary but shouldn't cause substantial risk but does control speed enforcement systems Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. From THEA: proprietary info that should not be tampered with; could directly affect safety if compromised posting unsafe speed limits, etc. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH. From THEA: want updates but outdated information will not be catastrophic; should be able to use previous/default config
Traffic Management Center Maint and Constr Management Center field device coordination Low Moderate Moderate
There should be little harm to come from knowing who controls what field device in most instances. For security monitoring objects such as security cameras this might be MODERATE, but the flow is marked as low since it is unlikely that those kinds of objects have shared control. If this flow is incorrect or manipulated then an unauthorized party may be able to gain control of a device, which can have significant effects. This is not a control flow however, so actual control is unlikely, thus MODERATE. Depends on the sharing arrangement, but generally interfaces between centers should provide timely response to enable proper decision making and action.
Traffic Management Center Transportation Information Center lane closure information Low Moderate Low
Lane closure information is intended for broadcast and public consumption. Data should be consistent with observed reality, so it should be protected appropriately, otherwisee users may lose confidence in and ignore this flow in the future. While useful, this information is available through a variety of means.
Traffic Management Center Transportation Information Center reduced speed warning info Not Applicable Moderate Moderate
This data is intentionally transmitted to everyone via a broadcast. It can also be determined via other visual indicators. This information should be accurate, but an incorrect information should not have a direct impact causing the loss of life or limb. The system should be able to operate properly if it misses a few messages. If a message is not received, the ITS RE should know.
Transportation Information Center Vehicle lane closure information Low Moderate Low
Lane closure information is intended for broadcast and public consumption. Data should be consistent with observed reality, so it should be protected appropriately, otherwisee users may lose confidence in and ignore this flow in the future. While useful, this information is available through a variety of means.
Transportation Information Center Vehicle reduced speed warning info Not Applicable Moderate Moderate
This data is intentionally transmitted to everyone via a broadcast. It can also be determined via other visual indicators. This information should be accurate, but an incorrect information should not have a direct impact causing the loss of life or limb. The system should be able to operate properly if it misses a few messages. If a message is not received, the ITS RE should know.
Vehicle Basic Vehicle driver update information Low Moderate Moderate
This information is all presented to the vehicle operator. Encrypting this information may make it harder to reverse engineer vehicle systems, and may defeat criminal tracking tools when the vehicle has already been compromised. Unless those scenarios are of concern to the operator or manufacturer, this can safely be set LOW. Any information presented to the operator of a vehicle should be both accurate and timely. By definition this includes safety information, but given that the driver has other means of learning about most threats, it seems difficult to justify HIGH. If HIGH is warranted, it should apply to both availability and integrity. Any information presented to the operator of a vehicle should be both accurate and timely. By definition this includes safety information, but given that the driver has other means of learning about most threats, it seems difficult to justify HIGH. If HIGH is warranted, it should apply to both availability and integrity.
Vehicle Connected Vehicle Roadside Equipment vehicle location and motion for surveillance Not Applicable Moderate Moderate
This is directly observable data; DISC: WYO believes this to be MODERATE Incorrect information here could lead to the system not functioning properly. If they are unable to properly detect all vehicles crossing the border, it would lead to confusion. There are other factors, such as visual indicators, of vehicles crossing the border, which can be used to help mitigate contradicting information. DISC: THEA believes this should be HIGH: "BSM info needs to be accurate and should not be tampered with" WYO believes this to be HIGH This information must be available in a timely manner for the system to act upon it. The system can operate correctly if some messages are missed, but overall a majority of them should be received.; WYO believes this to be LOW
Vehicle Driver driver updates Not Applicable Moderate Moderate
This data is informing the driver about the safety of a nearby area. It should not contain anything sensitive, and does not matter if another person can observe it. This is the information that is presented to the driver. If they receive incorrect information, they may act in an unsafe manner. However, there are other indicators that would alert them to any hazards, such as an oncoming vehicle or crossing safety lights. If this information is not made available to the driver, then the system has not operated correctly.

Standards

The following table lists the standards associated with physical objects in this service package. For standards related to interfaces, see the specific information flow triple pages.

Name Title Physical Object
CTI 4001 RSU Dedicated Short-Range Communications Roadside Unit Specifications (FHWA-JPO-17-589) Connected Vehicle Roadside Equipment
ITE ATC ITS Cabinet Intelligent Transportation System Standard Specification for Roadside Cabinets ITS Roadway Equipment
NEMA TS 8 Cyber and Physical Security Cyber and Physical Security for Intelligent Transportation Systems ITS Roadway Equipment
Maint and Constr Management Center
Traffic Management Center
NEMA TS4 Hardware Standards for DMS Hardware Standards for Dynamic Message Signs (DMS) With NTCIP Requirements ITS Roadway Equipment




System Requirements

System Requirement Need
001 The system shall provide reduced speed zone posted speed limits and associated schedules and information about associated road configuration changes including lane merges and shifts for display on roadside devices. 02 Traffic Operations or Maintenance Operations need to be able to warn connected vehicles that they are driving above the posted reduced speed zone speed limit and/or the vehicle is impacted by changed roadway configurations in order for the connected vehicle to take appropriate action.
002 The system shall provide to roadside equipment, for transmittal to connected vehicles, reduced speed zone posted speed limits and associated schedules and information about associated road configuration changes including lane merges and shifts. 02 Traffic Operations or Maintenance Operations need to be able to warn connected vehicles that they are driving above the posted reduced speed zone speed limit and/or the vehicle is impacted by changed roadway configurations in order for the connected vehicle to take appropriate action.
003 The system shall provide intersection status, lane control information, and other real time traffic control related information to vehicles. 03 Drivers need to be able to receive warnings that the vehicle is approaching a reduced speed limit zone or that there are lane closures or roadway configuration changes in the upcoming roadway.
004 The system shall provide target speed limit, speed advisories, and/or speed limit information to vehicle. 02 Traffic Operations or Maintenance Operations need to be able to warn connected vehicles that they are driving above the posted reduced speed zone speed limit and/or the vehicle is impacted by changed roadway configurations in order for the connected vehicle to take appropriate action.
005 The system shall control reduced speed zone warning roadside equipment, providing the location and extent of the reduced speed zone, the posted speed limit(s) with information about the applicability of the speed limit(s) (e.g., time of day, day of week, 02 Traffic Operations or Maintenance Operations need to be able to warn connected vehicles that they are driving above the posted reduced speed zone speed limit and/or the vehicle is impacted by changed roadway configurations in order for the connected vehicle to take appropriate action.
006 The system shall provide a safe speed advisory to passing drivers via a driver information system (such as portable messages signs, field to vehicle communications to in-vehicle signing systems, etc.). 03 Drivers need to be able to receive warnings that the vehicle is approaching a reduced speed limit zone or that there are lane closures or roadway configuration changes in the upcoming roadway.
007 The system shall provide the reduced speed zone current posted speed limit as established by the controlling center and any roadway configuration changes associated with the reduced speed zone (e.g., lane closures, lane shifts). 02 Traffic Operations or Maintenance Operations need to be able to warn connected vehicles that they are driving above the posted reduced speed zone speed limit and/or the vehicle is impacted by changed roadway configurations in order for the connected vehicle to take appropriate action.
008 The system shall provide vehicles with about speed reductions, lane closures or roadway configuration changes. 01 Traffic Operations or Maintenance Operations need to be able to provide to Connected Vehicles information about speed reductions, lane closures or roadway configuration changes.
009 The system shall receive lane closure warnings from the roadside field equipment. 03 Drivers need to be able to receive warnings that the vehicle is approaching a reduced speed limit zone or that there are lane closures or roadway configuration changes in the upcoming roadway.
010 The system shall receive information about reduced road speed or lane closures from a center or from connected vehicle roadside equipment. 01 Traffic Operations or Maintenance Operations need to be able to provide to Connected Vehicles information about speed reductions, lane closures or roadway configuration changes.
03 Drivers need to be able to receive warnings that the vehicle is approaching a reduced speed limit zone or that there are lane closures or roadway configuration changes in the upcoming roadway.
 

Implementations



VS09.1 Traditional Reduced Speed Warning Implementation

Traffic detectors/speed sensors in the infrastructure measure vehicle speeds and traditional ITS assets like DMS are used to provide warnings to drivers approaching reduced speed zones and segments with lane closures. This basic implementation does not include direct communications with approaching vehicles. The more advanced implementations build on this basic implementation, providing backwards compatibility for unequipped vehicles approaching the reduced speed zone.

Traditional Reduced Speed Warning Implementation Flows

Information FlowDescriptionInclusion Status
driver information Regulatory, warning, guidance, and other information provided to the driver to support safe and efficient vehicle operation. Fundamental
field device coordination Coordination between operating centers that share control of the same field devices. This flow supports coordination to prevent conflicts and allow cooperative management of shared devices. Optional
roadway dynamic signage data Information used to initialize, configure, and control dynamic message signs. This flow can provide message content and delivery attributes, local message store maintenance requests, control mode commands, status queries, and all other commands and associated parameters that support remote management of these devices. At Least One
roadway dynamic signage status Current operating status of dynamic message signs. At Least One
speed monitoring control Information used to configure and control automated speed monitoring, speed warning, and speed enforcement systems. At Least One
speed monitoring information System status including current operational state and logged information including measured speeds, warning messages displayed, and violation records. At Least One
vehicle characteristics The physical or visible characteristics of individual vehicles that can be used to detect, classify, and monitor vehicles and imaged to uniquely identify vehicles. Fundamental


Traditional Reduced Speed Warning Implementation Functional Objects

Functional Object
MCM Reduced Speed Zone Warning
Roadway Speed Monitoring and Warning
TMC Speed Warning


Back to Implementation List

VS09.2 WAW Reduced Speed Warning Implementation

Wide-area wireless (WAW) communications is used to communicate reduced speed and lane closure warnings to equipped vehicles, replacing or augmenting traditional ITS assets like DMS for communicating warnings. In this alternative, vehicle on-board equipment can self-monitor current vehicle speed in order to alert drivers who are exceeding the reduced speed limit provided by the infrastructure. Infrastructure-based speed monitoring equipment can also be used to measure vehicle speeds approaching the reduced speed zone.

WAW Reduced Speed Warning Implementation Flows

Information FlowDescriptionInclusion Status
driver information Regulatory, warning, guidance, and other information provided to the driver to support safe and efficient vehicle operation. Optional
driver input Driver input to the vehicle on-board equipment including configuration data, settings and preferences, interactive requests, and control commands. Optional
driver input information Driver input received from the driver-vehicle interface equipment via the vehicle bus. It includes configuration data, settings and preferences, interactive requests, and control commands for the connected vehicle on-board equipment. Optional
driver update information Information provided to the driver-vehicle interface to inform the driver about current conditions, potential hazards, and the current status of vehicle on-board equipment. The flow includes the information to be presented to the driver and associated metadata that supports processing, prioritization, and presentation by the DVI as visual displays, audible information and warnings, and/or haptic feedback. Optional
driver updates Information provided to the driver including visual displays, audible information and warnings, and haptic feedback. The updates inform the driver about current conditions, potential hazards, and the current status of vehicle on-board equipment. Fundamental
field device coordination Coordination between operating centers that share control of the same field devices. This flow supports coordination to prevent conflicts and allow cooperative management of shared devices. Optional
host vehicle status Information provided to the ITS on-board equipment from other systems on the vehicle platform. This includes the current status of the powertrain, steering, and braking systems, and status of other safety and convenience systems. In implementations where GPS is not integrated into the Vehicle On-Board Equipment, the host vehicle is also the source for data describing the vehicle's location in three dimensions (latitude, longitude, elevation) and accurate time that can be used for time synchronization across the ITS environment. Optional
lane closure information Lane closure information provided to passing vehicles. This flow provides information about roadway configuration changes such as lane closures and shifts. Fundamental
reduced speed warning info Real time notification of vehicle detections, measured vehicle characteristics (e.g., vehicle height), speed measurements, and warnings issued by roadway infrastructure. This flow can also include roadway configuration data, current speed limits, and warning parameters and thresholds enabling local speed management application configuration and management. Fundamental
roadway dynamic signage data Information used to initialize, configure, and control dynamic message signs. This flow can provide message content and delivery attributes, local message store maintenance requests, control mode commands, status queries, and all other commands and associated parameters that support remote management of these devices. At Least One
roadway dynamic signage status Current operating status of dynamic message signs. At Least One
speed monitoring control Information used to configure and control automated speed monitoring, speed warning, and speed enforcement systems. At Least One
speed monitoring information System status including current operational state and logged information including measured speeds, warning messages displayed, and violation records. At Least One
vehicle characteristics The physical or visible characteristics of individual vehicles that can be used to detect, classify, and monitor vehicles and imaged to uniquely identify vehicles. Optional


WAW Reduced Speed Warning Implementation Functional Objects

Functional Object
MCM Reduced Speed Zone Warning
Roadway Speed Monitoring and Warning
TIC Traffic Control Dissemination
TMC Speed Warning
Vehicle Speed Management Assist
Vehicle Traveler Information Reception


Back to Implementation List

VS09.3 C-ITS Reduced Speed Warning Implementation

Short range communications provides connected vehicles approaching a reduced speed zone with the posted speed limit, lane closure information, and vehicle-specific warnings for vehicles exceding the speed limit. The infrastructure monitors the short range communications, including vehicle-reported speed, and uses this to issue vehicle-specific speed warnings. This implementation Includes the CVRSE interfaces as mandatory and many of the alternative ITSRE interfaces become optional, but they are still included to support a real-world mix of equipped and unequipped vehicles.

C-ITS Reduced Speed Warning Implementation Flows

Information FlowDescriptionInclusion Status
driver information Regulatory, warning, guidance, and other information provided to the driver to support safe and efficient vehicle operation. Optional
driver input Driver input to the vehicle on-board equipment including configuration data, settings and preferences, interactive requests, and control commands. Optional
driver input information Driver input received from the driver-vehicle interface equipment via the vehicle bus. It includes configuration data, settings and preferences, interactive requests, and control commands for the connected vehicle on-board equipment. Optional
driver update information Information provided to the driver-vehicle interface to inform the driver about current conditions, potential hazards, and the current status of vehicle on-board equipment. The flow includes the information to be presented to the driver and associated metadata that supports processing, prioritization, and presentation by the DVI as visual displays, audible information and warnings, and/or haptic feedback. Optional
driver updates Information provided to the driver including visual displays, audible information and warnings, and haptic feedback. The updates inform the driver about current conditions, potential hazards, and the current status of vehicle on-board equipment. Fundamental
field device coordination Coordination between operating centers that share control of the same field devices. This flow supports coordination to prevent conflicts and allow cooperative management of shared devices. Optional
host vehicle status Information provided to the ITS on-board equipment from other systems on the vehicle platform. This includes the current status of the powertrain, steering, and braking systems, and status of other safety and convenience systems. In implementations where GPS is not integrated into the Vehicle On-Board Equipment, the host vehicle is also the source for data describing the vehicle's location in three dimensions (latitude, longitude, elevation) and accurate time that can be used for time synchronization across the ITS environment. Optional
lane closure information Lane closure information provided to passing vehicles. This flow provides information about roadway configuration changes such as lane closures and shifts. Fundamental
reduced speed notification Reduced speed zone information provided to passing vehicles. This flow provides the reduced speed limit, the location and extent of the reduced speed zone, and associated warning information. Fundamental
reduced speed warning info Real time notification of vehicle detections, measured vehicle characteristics (e.g., vehicle height), speed measurements, and warnings issued by roadway infrastructure. This flow can also include roadway configuration data, current speed limits, and warning parameters and thresholds enabling local speed management application configuration and management. Optional
roadway dynamic signage data Information used to initialize, configure, and control dynamic message signs. This flow can provide message content and delivery attributes, local message store maintenance requests, control mode commands, status queries, and all other commands and associated parameters that support remote management of these devices. At Least One
roadway dynamic signage status Current operating status of dynamic message signs. At Least One
speed monitoring control Information used to configure and control automated speed monitoring, speed warning, and speed enforcement systems. At Least One
speed monitoring information System status including current operational state and logged information including measured speeds, warning messages displayed, and violation records. At Least One
speed warning application info Roadway configuration data, current speed limits including time of day, week, or season speed limits as necessary, and warning parameters and thresholds. This flow also supports remote control of the application so the application can be taken offline, reset, or restarted. At Least One
speed warning application status Speed warning application status reported by the RSE. This includes current operational state and status of the RSE and a record of measured vehicle speeds and notifications, alerts, and warnings issued. At Least One
vehicle characteristics The physical or visible characteristics of individual vehicles that can be used to detect, classify, and monitor vehicles and imaged to uniquely identify vehicles. Optional
vehicle location and motion for surveillance Data describing the vehicle's location in three dimensions, heading, speed, acceleration, braking status, and size. This flow represents monitoring of basic safety data ('vehicle location and motion') broadcast by passing connected vehicles for use in vehicle detection and traffic monitoring applications. Fundamental


C-ITS Reduced Speed Warning Implementation Functional Objects

Functional Object
MCM Reduced Speed Zone Warning
Roadway Speed Monitoring and Warning
RSE Speed Warning
TMC Speed Warning
Vehicle Basic Safety Communication
Vehicle Speed Management Assist


Back to Implementation List