ITS Mission Definition

Prepared by the

Architecture Development Team

Prepared for:

Research and Innovation Technology Administration (RITA)
US Department of Transportation
Washington D.C.

U.S. Department of Transportation
Research and Innovative Technology Administration

May 2007
Forward

The *Mission Definition* is one of the original National ITS Architecture documents and was developed to explain the original mission of the architecture development effort. It also contains an operational concept for the original architecture development effort tied to the original categorization of urban, interurban, and rural needs. The third major section of the document is a set of operational requirements that define a functional, performance, and data requirements for systems that provide the functionality described in the architecture. While the document has been updated over the years to include the revisions to user services and service packages in the architecture, it basically represents a description of the original architecture development effort, and as such will not be further updated, but retained as an expression of the original mission, needs, and requirements that drove the original development of the National ITS Architecture.
Executive Summary

The National ITS Architecture Mission Definition includes the system level concepts and requirements that document the fundamental needs which will be fulfilled by a successful ITS architecture. It provides a representation of the system that is useful for conveying the ideas for future improved transportation systems to the general public. The Mission Definition contains a concise mission statement explaining the purpose of the National ITS Architecture. The mission is defined, based on ITS architecture goals and objectives, in such a manner that it can be accomplished across diverse operational scenarios and deployment timeframes. Levels of performance, which accomplish the mission, are specified, taking into account other system-level technical and non-technical constraints that influence the architecture development phases.

The Mission is the development of the National ITS Architecture. This architecture will facilitate the application of current and future technologies to improve the personal transportation experience and to improve the processes involved in moving people, goods, services and information throughout the country.

The National ITS Architecture is the framework of interconnected subsystems which together provide the ITS user services through allocated functionality and defined interfaces. This architecture must be open and flexible to prevent unnecessary restriction to implementation choice and to accommodate the varied needs of the public and private sectors. At the same time, the architecture definition must be sufficiently precise to ensure a transportation and communication system design that is both compatible and interoperable across the nation.

The goals of the National ITS Architecture are summarized as follows:

- Increase operational efficiency and capacity of the transportation system.
- Enhance personal mobility and the convenience and comfort of the transportation system.
- Improve the safety of the Nation’s transportation system.
- Reduce energy consumption and environmental costs.
- Enhance the present and future economic productivity of individuals, organizations and the economy as a whole.
- Create an environment in which the development and deployment of ITS can flourish.

Following the operational concept section, the operational requirements define the system processes, information flows, performance parameters, and technical and non-technical constraints which the ITS must incorporate, be developed from, and operationally satisfy. These requirements specify an initial system-level basis from which development of an ITS architecture can take place. Operational requirements are organized into system-level requirements, user requirements, performance requirements, "ilities", e.g., reliability and maintainability, and program requirements.
Table of Contents

1.0 INTRODUCTION 1

2.0 MISSION STATEMENT 2

3.0 OPERATIONAL CONCEPT 3

3.1 Goals and Objectives 3
3.1.1 National ITS Architecture Goals 3
3.1.2 National ITS Architecture Development Objectives 6
3.2 Conceptual Approach 13
3.2.1 User Service Support 14
3.2.2 Architecture Approaches to Meet Objectives 17
3.3 User Identification 18
3.3.1 Institutional Element 19
3.3.2 Transportation Element 21
3.3.3 Communications Element 22
3.3.4 User Service Developers, Operators, and Users 23
3.4 System Interactions 23
3.4.1 Direct Interactions 24
3.4.2 Indirect Interactions 24

TABLE 3.3.4-1. ITS FUNDING SOURCES, DEVELOPERS, OPERATORS, AND USERS 25

4.0 OPERATIONAL REQUIREMENTS 30

4.1 System-level Requirements 30
4.1.1 Service Availability and Quality 31
4.1.2 Service Interoperability 31
4.1.3 Service Continuity 31
4.1.4 Service Information Management and Distribution 31
4.1.5 Service Growth, Flexibility, and Expansion 32
4.1.6 Equity of Service and Support 32
4.1.7 Service Evolution 32
4.1.8 Variations in Service Configurations 32
4.2 User Requirements 32
4.2.1 Generic 33
4.2.2 Driver 34
4.2.3 Traveler 34
4.2.4 Operator 34
4.2.5 Fleet Manager 35
4.2.6 Other Users 35
4.3 Performance Requirements 35
4.3.1 Pre-Trip Travel Information 36
4.3.2 En-Route Driver Information 36
4.3.3 Route Guidance 37
4.3.4 Ride Matching and Reservation 37
4.3.5 Traveler Service Information 38
4.3.6 Traffic Control 38
4.3.7 Incident Management 39
4.3.8 Travel Demand Management 40
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.9 Emissions Testing and Mitigation</td>
<td>41</td>
</tr>
<tr>
<td>4.3.10 Highway-Rail Intersection</td>
<td>41</td>
</tr>
<tr>
<td>4.3.11 Public Transportation Management</td>
<td>42</td>
</tr>
<tr>
<td>4.3.12 En-Route Transit Information</td>
<td>43</td>
</tr>
<tr>
<td>4.3.13 Personalized Public Transit</td>
<td>44</td>
</tr>
<tr>
<td>4.3.14 Public Travel Security</td>
<td>45</td>
</tr>
<tr>
<td>4.3.15 Electronic Payment Services</td>
<td>46</td>
</tr>
<tr>
<td>4.3.16 Commercial Vehicle Electronic Clearance</td>
<td>46</td>
</tr>
<tr>
<td>4.3.17 Automated Roadside Safety Inspection</td>
<td>47</td>
</tr>
<tr>
<td>4.3.18 On-Board Safety and Security Monitoring</td>
<td>48</td>
</tr>
<tr>
<td>4.3.19 Commercial Vehicle Administrative Processing</td>
<td>49</td>
</tr>
<tr>
<td>4.3.20 Hazardous Material Security and Incident Response</td>
<td>49</td>
</tr>
<tr>
<td>4.3.21 Freight Mobility</td>
<td>50</td>
</tr>
<tr>
<td>4.3.22 Emergency Notification and Personal Security</td>
<td>51</td>
</tr>
<tr>
<td>4.3.23 Emergency Vehicle Management</td>
<td>52</td>
</tr>
<tr>
<td>4.3.24 Disaster Response and Evacuation</td>
<td>53</td>
</tr>
<tr>
<td>4.3.25 Longitudinal Collision Avoidance</td>
<td>53</td>
</tr>
<tr>
<td>4.3.26 Lateral Collision Avoidance</td>
<td>54</td>
</tr>
<tr>
<td>4.3.27 Intersection Collision Avoidance</td>
<td>55</td>
</tr>
<tr>
<td>4.3.28 Vision Enhancement for Crash Avoidance</td>
<td>56</td>
</tr>
<tr>
<td>4.3.29 Safety Readiness</td>
<td>56</td>
</tr>
<tr>
<td>4.3.30 Pre-Crash Restraint Deployment</td>
<td>57</td>
</tr>
<tr>
<td>4.3.31 Automated Vehicle Operation</td>
<td>58</td>
</tr>
<tr>
<td>4.3.32 Archived Data Function</td>
<td>59</td>
</tr>
<tr>
<td>4.3.33 Maintenance and Construction Operations</td>
<td>62</td>
</tr>
<tr>
<td>4.4 System Constraints and Life Cycle Factors</td>
<td>66</td>
</tr>
<tr>
<td>4.4.1 Service Availability</td>
<td>66</td>
</tr>
<tr>
<td>4.4.2 Reliability</td>
<td>66</td>
</tr>
<tr>
<td>4.4.3 Maintainability</td>
<td>66</td>
</tr>
<tr>
<td>4.4.4 System Safety</td>
<td>68</td>
</tr>
<tr>
<td>4.4.5 Producibility</td>
<td>68</td>
</tr>
<tr>
<td>4.4.6 Supportability</td>
<td>68</td>
</tr>
<tr>
<td>4.4.7 Human Factors</td>
<td>69</td>
</tr>
<tr>
<td>4.4.8 System Security and Integrity</td>
<td>69</td>
</tr>
<tr>
<td>4.4.9 System Compatibility</td>
<td>70</td>
</tr>
<tr>
<td>4.4.10 System Environments</td>
<td>70</td>
</tr>
<tr>
<td>4.5 Program Requirements</td>
<td>70</td>
</tr>
<tr>
<td>4.5.1 Deployment Requirements</td>
<td>70</td>
</tr>
<tr>
<td>4.5.2 Implementation Requirements</td>
<td>71</td>
</tr>
<tr>
<td>4.5.3 Institutional Requirements</td>
<td>71</td>
</tr>
<tr>
<td>4.5.4 Political Provisions</td>
<td>72</td>
</tr>
<tr>
<td>4.5.5 Legal Provisions</td>
<td>72</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The Mission Definition contains the system level concepts and requirements that document the fundamental needs to be fulfilled by a successful ITS architecture. It provides a representation of the system that is useful for conveying the ideas for future improved transportation systems to the general public. To define the ITS architecture mission, this document:

1. Provides a concise mission statement (Section 2.0: Mission Statement),

2. Defines how the mission is to be accomplished across the diverse operational scenarios and deployment timeframes. (Section 3.0: Operational Concept),

3. Specifies the level of performance needed to accomplish the mission, and other system-level technical and non-technical constraints that influence the succeeding architecture development phases (Section 4.0: Operational Requirements).
2.0 MISSION STATEMENT

The Mission is the development of the National ITS Architecture. This architecture will facilitate the application of current and future technologies, to improve the personal transportation experience, and to improve the processes involved in moving people, goods, services, and information throughout the country.

The National ITS Architecture is the framework of interconnected subsystems which, together, provides the ITS user services through allocated functionality and defined interfaces. This architecture must be open and flexible to prevent unnecessary restriction to implementation choice. The architecture must also accommodate the varied needs of the public and private sectors. At the same time, the architecture definition must be sufficiently precise to ensure a transportation and communication system design that is both compatible and interoperable across the nation.
3.0 OPERATIONAL CONCEPT

The operational concept describes how the National ITS Architecture satisfies the mission statement. The operational concept:

1. Derives the ITS architecture goals and objectives from the mission statement and ITS goals,
2. Defines architecture concepts and describes their relationship to the mission statement,
3. Identifies those who will fund, build, operate, maintain, and use the architecture elements,
4. Describes how users will interact within the architecture to accomplish the goals and objectives of the National ITS Architecture.

3.1 Goals and Objectives

The following statement describes the major goals of the National ITS Program and its architecture:

Create a system that enhances transportation through the safe and efficient movement of people, goods, and information, with greater mobility and fuel efficiency, less pollution, and increased operating efficiency. The system must be accommodating and fair in serving the interests of government, individuals, and companies who desire to competitively develop and market transportation technologies.

3.1.1 National ITS Architecture Goals

Six ITS goals consistent with those presented in the Strategic Plan and National ITS Program Plan may be derived from the statement above:

1. **Increase operational efficiency and capacity of the transportation system.** A central goal of ITS is to better utilize the capacity and increase operational efficiency of the surface transportation system. In fact, this goal actually underlies and enables attainment of several of the other ITS goals. Reducing congestion, providing reliable information on which travelers can make better travel decisions, eliminating the delays of toll collection, and more traffic-responsive coordination of traffic lights all contribute to enhanced effective capacity and efficiency, as well as to general mobility, productivity, more efficient use of resources, and reduced environmental impact. A bit further out in time, the automated highway system (AHS) will contribute even more dramatically to increasing the effective capacity of our existing travel ways.

2. **Enhance personal mobility and the convenience and comfort of the transportation system.** Goal #1 makes a major contribution toward this, as will public transportation systems that are more convenient and cost-effective. New control systems will increase transit automation and predictability. Intermodal management services will improve
connections between modal systems and increase trip end opportunities. Increased availability of high-fidelity traveler information will enable better-informed travelers to make the best transportation choices.

3. **Improve the safety of the Nation’s transportation system.** There is need for safety improvement, particularly in overcoming human error in vehicle operation, preventing or reducing the severity of injuries in collisions, and enhancing security of travelers and infrastructure of all transportation modes. Safety is a key consideration in the implementation of all ITS services, but the most dramatic gains are expected to derive from the Advanced Vehicle Control and Safety Systems.

4. **Reduce energy consumption and environmental costs.** Our ability to use energy more efficiently and reduce environmental costs will depend, in part, on the technologies applied through the ITS program. More efficient energy use and improved air quality can be achieved by ITS services that encourage public transportation use, increase average vehicle occupancy, smooth traffic flow, and manage travel demand. Better use of existing transportation resources will positively impact land use by reducing requirements for new infrastructure.

5. **Enhance the present and future economic productivity of individuals, organizations and the economy as a whole.** Transportation is an integral part of nearly all productive processes, and making transportation more efficient (Goal #1) lets all these processes be more efficient. This also applies to individuals in their daily lives: commuting, shopping, and socializing. Thus, more efficient routing, reduced travel times, and more efficient administration of the transportation system will enable productivity gains across the spectrum of the economy. This goal of the National ITS Architecture is an advancement of Goal 2 (mobility) which includes further demand adjustments to increase economic output.

6. **Create an environment in which the development and deployment of ITS can flourish.** This goal is distinct in that it directly addresses architecture issues rather than user service and design issues. The National ITS Architecture development effort is one of the principle steps that will facilitate the application of new technologies to surface transportation. The degree to which the architecture is open and facilitates standardization and interoperability will foster active industry participation in the design, development, deployment, and operation of ITS subsystems.

Table 3.1.2-1 provides a more detailed delineation of the specific actions and objectives that can contribute to these broad goals of the National ITS Architecture. Clearly there are tradeoffs among almost all of these objectives.
Table 3.1.2-1. ITS Development Objectives \(^1\)

<table>
<thead>
<tr>
<th>Increase operational efficiency and capacity of the transportation system</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increase operational efficiency</td>
</tr>
<tr>
<td>• Increase speeds and reduce stops</td>
</tr>
<tr>
<td>• Reduce delay at intermodal transfer points</td>
</tr>
<tr>
<td>• Reduce operating costs of the infrastructure</td>
</tr>
<tr>
<td>• Increase private vehicle occupancy and transit usage</td>
</tr>
<tr>
<td>• Reduce private vehicle and transit operating costs</td>
</tr>
<tr>
<td>• Facilitate fare collection and fare reduction/equity strategies</td>
</tr>
<tr>
<td>• Reduce freight operating costs and increase freight throughput</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enhance personal mobility, convenience, and comfort of the transportation system</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increase personal travel opportunities</td>
</tr>
<tr>
<td>• Decrease personal costs of travel including:</td>
</tr>
<tr>
<td>• Increase awareness, and ease of use of transit and ridesharing</td>
</tr>
<tr>
<td>• Travel time, travel time reliability and travel cost</td>
</tr>
<tr>
<td>• Comfort, stress, fatigue, and confusion</td>
</tr>
<tr>
<td>• Safety and personal security</td>
</tr>
<tr>
<td>• Increase sense of control over one’s own life from predictable system operation</td>
</tr>
<tr>
<td>• Decrease cost of freight movement to shippers, including:</td>
</tr>
<tr>
<td>• More reliable “just-in-time” delivery</td>
</tr>
<tr>
<td>• Travel time and cost</td>
</tr>
<tr>
<td>• Driver fatigue and stress</td>
</tr>
<tr>
<td>• Cargo security</td>
</tr>
<tr>
<td>• Safety (e.g., from tracking hazardous material)</td>
</tr>
<tr>
<td>• Transaction costs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Improve the safety of the Nation’s transportation system</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increase personal security</td>
</tr>
<tr>
<td>• Reduce number and severity (cost) of accidents, and vehicle thefts</td>
</tr>
<tr>
<td>• Reduce fatalities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reduce energy consumption and environmental costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reduce vehicle emissions due to congestion and fuel consumption due to congestion</td>
</tr>
<tr>
<td>• Reduce noise pollution</td>
</tr>
<tr>
<td>• Reduce neighborhood traffic intrusiveness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enhance the present and future economic productivity of individuals, organizations and the economy as a whole</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increase sharing of incident/congestion information</td>
</tr>
<tr>
<td>• Reduce information-gathering costs</td>
</tr>
<tr>
<td>• Increase coordination/integration of network operation, management, and investment</td>
</tr>
<tr>
<td>• Improve ability to evolve with changes in system performance requirements and technology</td>
</tr>
</tbody>
</table>

\(^1\) Adapted from Daniel Brand, “Criteria and Methods for Evaluating Intelligent Transportation System Plans and Operational Tests”, Transportation Research Record 1453, 1995 and other valued Stakeholder and Architecture Review team inputs.
3.1.2 National ITS Architecture Development Objectives

The National ITS Architecture defines an overall framework of integrated subsystems that can provide all of the services desired of the ITS. The objectives of this effort are as follows:

1. **To provide a framework for the definition of appropriate standards.** These standards insure national interoperability, so that vehicle equipment purchased anywhere will work throughout the nation. Standards increase the practicality of modularity in design and manufacture, and modularity based on appropriate standards permits the interchangeability both within and among subsystems. In turn, this allows greater competition among equipment suppliers and insures that cities do not become captive to proprietary systems as well as broadens their options for follow-on upgrading or expansion. It also permits volume production and concurrently lower costs.

2. **To provide the basis for integration among subsystems.** This reduces the need for duplicated functions in different subsystems and thereby enhances reliability and reduces costs. This also insures the use of common information sources among subsystems.

3. **To insure a high degree of flexibility in user choice.** Users can purchase only what they need, recognizing that they are dealing with building blocks that can support a wide range of implementation options without losing the advantages of integration and standards, or foreclosing the option for future upgrading and expansion.

A set of objectives specific to the National ITS Architecture development effort can be derived from the system level National ITS Architecture goals. The overall statement of objectives is provided below. Table 3.1.2-1 further describes the objectives for ITS architecture development.

![The objective of the ITS Architecture development effort is to create an integrated system architecture whose component subsystems satisfy the National ITS Architecture goals, ensure nationwide compatibility and interoperability, support the necessary range of implementations, and allow for cost-effective expansion and modernization.]

3.1.2.1 Scenario-Specific Goals and Objectives

Clearly, transportation needs are not uniform across the country. To aid in thinking about and analyzing the differing needs, three scenarios have been defined to distinguish urban, inter-urban, and rural characteristics. Specific goals and objectives have been defined that are responsive to the characteristics of the three scenarios and time frames. Table 3.1.2.1-1 lists the diverse characteristics that distinguish urban, inter-urban, and rural scenarios.

The urban scenario includes a large population center, with a surface transportation infrastructure that may not keep pace with increasing demand. Services that enable transportation system efficiency and demand management (e.g., public transportation
management tools and integrated multi-modal traveler information) are paramount in the urban area. Urban environmental problems and crime problems also accentuate the need for services that address these problems. Note that these characteristics reflect those of a large urban area; small urban areas have different characteristics that must be considered, although they are not directly represented within the three specified scenarios.

The rural scenario is at the opposite end of the spectrum from the urban scenario. The rural scenario has fewer capacity-related problems, but many opportunities for driver misjudgment due to varied terrain and road conditions. The rural traveler has unique safety and information needs that facilitate travel in these sparsely populated geographical areas with broadly scattered services.

The inter-urban scenario can vary widely in its characteristics. Travel between Baltimore and Washington D.C., or Los Angeles and San Diego has a much different traffic flow pattern than that between Cedar Rapids and Minneapolis. The first two examples involve travel on highly congested corridors, while the third example closely reflects attributes of the rural scenario for most of the route. The common features considered in characterizing the inter-urban scenario were high-speed, long-distance travel along major routes crossing jurisdictional boundaries, and supporting heavy commercial vehicle usage. Another attribute of the inter-urban scenario is the multi-modal transportation environment that includes inter-city bus, rail, and air services.

An analysis of the characteristics for each scenario yields goals, derived from the system goals, that are tailored to address scenario-specific needs. Table 3.1.2.1-2 presents a preliminary set of goals that focus on the needs of the urban, inter-urban, and rural scenarios. The table reflects special areas of emphasis within a scenario, rather than an absolute allocation of goals to each scenario. This interpretation is important, since many goals pertain to all scenarios. The areas of emphasis reflect special critical needs that may be prioritized through early deployment in a scenario.

Deployments that satisfy a "scenario-specific" goal will often benefit multiple scenarios as well. For example, deployment of a driver performance monitoring subsystem might have originally been initiated due to a critical run-off-the-road problem in rural and inter-urban areas, but benefits are also derived from this deployment when equipped vehicles are operated in urban areas.
Table 3.1.2.1-1. Scenario Characteristics

<table>
<thead>
<tr>
<th>Urban Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>High population density</td>
</tr>
<tr>
<td>Large existing transportation and communications infrastructures</td>
</tr>
<tr>
<td>Extensive arterial network, saturated at peak travel times</td>
</tr>
<tr>
<td>Extensive freeway network, saturated and often congested</td>
</tr>
<tr>
<td>Underutilized/non-optimized mass transit</td>
</tr>
<tr>
<td>Heavy commuter traffic and large latent demand</td>
</tr>
<tr>
<td>Recurring and non-recurring congestion</td>
</tr>
<tr>
<td>Extensive local pick-up/delivery activity</td>
</tr>
<tr>
<td>Major terminus for goods shipping/receiving</td>
</tr>
<tr>
<td>Air quality concerns</td>
</tr>
<tr>
<td>More motor vehicle crashes</td>
</tr>
<tr>
<td>High crime areas</td>
</tr>
<tr>
<td>Limited land availability for additional facilities</td>
</tr>
<tr>
<td>Multi-modal transportation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter-urban Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix of users (rural-based and urban-based users traveling through)</td>
</tr>
<tr>
<td>Conditions vary widely from urban-like, to rural</td>
</tr>
<tr>
<td>Major interstate/state highway travel with secondary route alternatives</td>
</tr>
<tr>
<td>Less emphasis on transit</td>
</tr>
<tr>
<td>Intensive long-haul commercial vehicle usage</td>
</tr>
<tr>
<td>Periodic congestion associated with holidays/weekends</td>
</tr>
<tr>
<td>Non-recurring congestion due to incidents</td>
</tr>
<tr>
<td>High-speed, long-distance travel</td>
</tr>
<tr>
<td>Multi-jurisdictional</td>
</tr>
<tr>
<td>Multi-modal transportation</td>
</tr>
<tr>
<td>High single-vehicle accident rates</td>
</tr>
<tr>
<td>Recreational travelers that demand traveler information services</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rural Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix of users (rural-based and urban-based users traveling through)</td>
</tr>
<tr>
<td>Secondary roads with less frequent maintenance</td>
</tr>
<tr>
<td>Steep grades/blind corners/curves/few passing lanes</td>
</tr>
<tr>
<td>Large disparity in travel speeds (frequent passing)</td>
</tr>
<tr>
<td>Long travel distances</td>
</tr>
<tr>
<td>Fewer convenient detour options</td>
</tr>
<tr>
<td>Adverse road surface and weather conditions</td>
</tr>
<tr>
<td>Few navigational signs</td>
</tr>
<tr>
<td>Less existing infrastructure</td>
</tr>
<tr>
<td>Light usage/large geographical areas impede rapid emergency detection and response</td>
</tr>
<tr>
<td>Lack of enforcement invites safety infractions/excess speed.</td>
</tr>
<tr>
<td>More motor vehicle deaths</td>
</tr>
<tr>
<td>Recreational travelers that demand traveler information services</td>
</tr>
</tbody>
</table>

8 May 2007
Table 3.1.2.1-2. Identification of Scenario-Specific Goals

<table>
<thead>
<tr>
<th>Goal</th>
<th>Scenario Emphasis</th>
<th>Rural</th>
</tr>
</thead>
</table>
| **Increase operational efficiency and capacity of the transportation system** | • Smooth traffic flow
 • Signalized closed networks
 • Reduce delay associated with congestion
 • Emphasis on system goals (saturated network)
 • Increase average vehicle occupancy
 • Increase capacity of existing facilities
 • Reduce time lost in intermodal interchange | • Reduce travel time
 • Improve rural routing |
| **Enhance personal mobility, convenience, and comfort of the transportation system** | • Reduce travel time
 • Reduce congestion delay
 • Improve urban routing | • Increase trip end interchange options
 • Increase trip end opportunities
 • Improve rural routing |
| **Improve the safety of the Nation's transportation system** | • Reduce accident frequency and severity
 • rear-end
 • highway-highway intersection
 • highway-rail intersection
 • secondary collisions
 • truck overturns
 • Enhance traveler security
 • Reduce number of impaired drivers | • Reduce accident frequency and severity
 • rear-end
 • secondary collisions
 • truck overturns
 • Reduce number of impaired drivers
 • Long trip fatigue
 • Improve EMS/roadway services responsiveness | • Reduce accident frequency and severity
 • run off the road
 • rural intersection
 • highway-rail intersection
 • passing
 • animals on road
 • Reduce safety impacts stemming from adverse road/weather conditions
 • Reduce number of impaired drivers
 • Long trip fatigue
 • Improve EMS/roadway services responsiveness |
| **Reduce energy consumption and environmental costs** | • Reduce emissions/energy use associated with congestion
 • Increase average vehicle occupancy
 • Increase attractiveness of modal alternatives
 • Reduce need for new facilities
 • Effective incident management/routing | • Reduce emissions/energy use associated with congestion
 • Effective incident management/routing | • Reduce Vehicle Miles Traveled (VMT)
 • Improve rural routing |
3.1.2.2 Time Frame Specific Objectives

Just as the ITS will vary across scenarios, it will also change with time. Clearly the system will evolve, responsive to changing needs, availability of technologies, cumulative experience, and funding. To facilitate the analysis of this evolution, the view of the system at 5, 10 and 20 year points from the start of the program have been selected.

Objectives that are specific to each of the 5, 10, and 20 year time frames have been derived from the system goals. Based on considerations of technological feasibility, market acceptance, and institutional issue resolution, these objectives condition the final evolutionary deployment. The overall time-sensitive objective is to first address those services that: 1) provide substantial benefit at relatively low cost, 2) present low technical and non-technical risk, and 3) form a foundation that can be effectively enhanced in future time frames. Table 3.1.2.2-1 characterizes time-phased objectives that show incremental deployment of increasingly sophisticated services at increasing levels of penetration.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Urban</th>
<th>Inter-Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance the present and future economic productivity of individuals, organizations and the economy as a whole</td>
<td>• Reduce travel time</td>
<td>• Reduce costs incurred by fleet operators</td>
<td>• Reduce travel time</td>
</tr>
<tr>
<td></td>
<td>• Reduce congestion delay</td>
<td>• Reduce cost of fee (toll) collection</td>
<td>• Improve rural routing</td>
</tr>
<tr>
<td></td>
<td>• Improve urban routing</td>
<td>• Reduce travel time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reduce congestion delay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Increase vehicle speeds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reduce commercial vehicle regulation costs and delays</td>
<td></td>
</tr>
<tr>
<td>Create an environment in which the development and deployment of ITS can flourish</td>
<td>• Apply technology to ITS architecture needs</td>
<td>• Apply technology to ITS architecture needs</td>
<td>• Apply technology to ITS architecture needs</td>
</tr>
<tr>
<td></td>
<td>• Standardization and inter-operability to ensure marketable products</td>
<td>• Standardization and inter-operability to ensure marketable products</td>
<td>• Standardization and inter-operability to ensure marketable products</td>
</tr>
<tr>
<td></td>
<td>• Industry participation to promote acceptance</td>
<td>• Industry participation to promote acceptance</td>
<td>• Industry participation to promote acceptance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Time Phase</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployment (Transportation) Infrastructure</td>
<td>Early</td>
<td>Mid</td>
<td>Late</td>
</tr>
<tr>
<td>Deployment (Transportation) Infrastructure</td>
<td>Freeways</td>
<td>Arterials</td>
<td>Streets and Roads</td>
</tr>
<tr>
<td>Vehicle</td>
<td>Buses, Trucks</td>
<td>High-end Autos</td>
<td>Automobiles</td>
</tr>
<tr>
<td>Capabilities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As presented in the table, the implementation evolves:

- Modally, starting with deployment in high value commercial and transit vehicles and moving to lower value private vehicles as the services become less expensive.

- Through the roadway hierarchy beginning with the most traveled routes and ending with the lightly traveled secondary streets and rural roads.

- Increasing user expectation as services become more sophisticated. Information services may progress from uniform broadcasts (everyone gets the same information) to interactive personalized services (subscribers receive information tailored to their specific needs) to system-wide coordinated services. Control services begin by supplying advice and warnings that do not dilute user control. As technology improves, institutional issues are resolved, and user confidence is increased, more control responsibility can be automated. Where appropriate, fully automated systems may be realized.

- In the degree of integration as independent products are installed on a limited basis and then integrated and expanded to service broad geographic regions.

Table 3.1.2.2-2 presents a set of specific objectives for the three time frames that address five of the six system goals. The list of time-sequenced objectives will expand and mature over the course of the ITS architecture development as deployment issues are further analyzed.

<table>
<thead>
<tr>
<th>Category</th>
<th>Time Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early</td>
</tr>
<tr>
<td>Information</td>
<td>Uniform, Limited</td>
</tr>
<tr>
<td>Control</td>
<td>Warning/Advisory Systems</td>
</tr>
<tr>
<td>Integration</td>
<td>Individual subsystems</td>
</tr>
<tr>
<td>Geographic</td>
<td>Jurisdiction</td>
</tr>
</tbody>
</table>

Table 3.1.2.2-2: Representative Objectives by Time Frame
<table>
<thead>
<tr>
<th>Goal</th>
<th>5 Years</th>
<th>10 Years</th>
<th>20 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase operational efficiency and capacity of the transportation</td>
<td>• Make current data available to travelers</td>
<td>• Coordination between traffic and transit management</td>
<td>• Real-time route guidance (system goals)</td>
</tr>
<tr>
<td>system</td>
<td>• Congestion</td>
<td>• Enhanced paratransit</td>
<td>• Congestion pricing</td>
</tr>
<tr>
<td></td>
<td>• Static routing</td>
<td>• Real-time ride share</td>
<td>• User-responsive public transportation</td>
</tr>
<tr>
<td></td>
<td>• Transit information</td>
<td>• HOV pricing incentives</td>
<td>• Fully automated control to increase capacity</td>
</tr>
<tr>
<td></td>
<td>• Ride share information</td>
<td>• Real-time route guidance (user goals)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Improve incident response</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Improve traffic management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prioritize transit right-of-way</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Improve transit management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HOV implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhance personal mobility and the convenience and comfort of the</td>
<td>• Mobility</td>
<td>• Economic Development</td>
<td>• Personal Adaptations</td>
</tr>
<tr>
<td>transportation system</td>
<td>• Increase personal travel opportunities</td>
<td>• Increase access to:</td>
<td>• Lifestyle changes</td>
</tr>
<tr>
<td></td>
<td>• Decrease personal costs of travel including:</td>
<td>• Labor</td>
<td>• Land use (settlement) pattern changes</td>
</tr>
<tr>
<td></td>
<td>• Increase awareness and ease of use of transit and ridesharing</td>
<td>• Materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Travel time</td>
<td>• Markets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Travel time reliability</td>
<td>• Increase industrial output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Travel cost</td>
<td>• Reduce costs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Comfort, stress, fatigue, and confusion</td>
<td>• Increase investment in plant and equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Safety and personal security</td>
<td>• Opportunities for new services/product innovation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Increase sense of control over one’s own life from predictable system</td>
<td>• Opportunities for public/private partnerships</td>
<td></td>
</tr>
<tr>
<td></td>
<td>operation</td>
<td>• Increase international competitiveness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Decrease cost of freight movement to shippers, including:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• More reliable “just-in-time” delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Travel time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Travel cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Driver fatigue and stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cargo security</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Safety (e.g., from tracking hazardous material)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transaction costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>Time Frame Emphasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 Years</td>
<td>10 Years</td>
<td>20 Years</td>
</tr>
</tbody>
</table>
| Improve the safety of the Nation’s transportation system | • Provide driver warnings in unsafe/safe circumstances
• buses
• trucks
• Make current data available to travelers
• weather/road conditions
• incidents
• Improve notification times in collisions
• buses
• HAZMAT
• Automated HAZMAT tracking
• Improve real-time vehicle diagnostics
• Personal travel security
• Mayday signaling to improve safety
• Driver warnings of unsafe conditions via infrastructure devices
• Improve HRI Signage consistency/understanding | • Assume partial control in unsafe/safe circumstances
• buses
• trucks
• Driver monitoring
• buses
• trucks
• Provide driver warnings in unsafe circumstances
• autos
• Automated collision notification
• Advanced HRI warning systems/barriers | • Fully automated control in unsafe/safe conditions
• buses
• trucks
• autos
• Driver monitoring
• autos
• Smart intersections
• Highway-Highway
• Highway-Rail |
| Reduce energy consumption and environmental costs | • Reduce vehicle emissions due to congestion
• Reduce noise pollution
• Reduce neighborhood traffic intrusiveness
• Reduce fuel consumption due to congestion | | |
| Enhance the present and future economic productivity of individuals, organizations and the economy as a whole | • Improve fleet management
• Automate toll collection
• Streamline national commercial vehicle regulation | • Streamline multi-national commercial vehicle regulation | • Automated vehicle operation |

3.2 Conceptual Approach

ITS user services are implemented through the identification of user requirements. The user requirements are met through transportation and communication elements. The transportation element enables the movement of people and goods, while the communication element provides all necessary information transfers. The National ITS Architecture is intended to provide a framework for the interacting portions of these elements to facilitate standardization, efficiency, and synergy in user service implementation.
3.2.1 User Service Support

Thirty-three “User Services” have been defined to date to meet the broad ITS goals. These have been bundled into eight broad categories as shown in Table 3.2-1.

These multiple user services will be deployed in different circumstances to meet many different kinds of needs for a wide variety of different customers. A main consideration to the architecture development approach is the variation in user service capabilities. There will be significant differences in the degree that each of the 33 user services is evolved and integrated, based on time frame and jurisdictional constraints. No one location will implement all 33 user services to the highest level of functionality and integration possible.

The successful regional or project ITS architecture will be one that has the desired variations in user service functionality, and are recognized and reflected in the functional decomposition of the system requirements. Table 3.2-1 provides a sampling of the variations in user service implementations that may be desirable as the system is deployed across the nation over time. The functional variations reflect both increasing levels of capability from left to right and operation in different scenarios and applications.

The variations presented in the table will be accommodated in the architecture by: 1) performing the functional decomposition to a sufficient level of granularity so that "optional" functions are separable and distinct, 2) developing the primary functional relationships so that optional functions are not required for operation of the remainder of the system, and 3) developing the physical architecture that identifies the range of capability that is to be provided by each of the components. This approach helps to ensure that the architecture will support the desired adaptability and flexibility for incremental deployment in varied scenarios.

<table>
<thead>
<tr>
<th>User Service</th>
<th>Deployment Variations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variation 1</td>
</tr>
<tr>
<td>Travel and Traffic Management</td>
<td></td>
</tr>
<tr>
<td>Pre-Trip Travel Information</td>
<td>Real-time information available to travelers at home, office, etc.</td>
</tr>
<tr>
<td>En Route Driver Information</td>
<td>General in-vehicle display of static sign information along with driver advisories for current congestion, incident, conditions, etc.</td>
</tr>
<tr>
<td>Route Guidance</td>
<td>Autonomous route guidance supplying static directions</td>
</tr>
<tr>
<td>Ride Matching and Reservation</td>
<td>Match private vehicle owners/operators with potential riders</td>
</tr>
<tr>
<td>Traveler Services Information</td>
<td>Fixed "Yellow pages" service optimized for traveler queries</td>
</tr>
<tr>
<td>Traffic Control</td>
<td>Enhanced freeway control</td>
</tr>
</tbody>
</table>

Table 3.2-1. Sample Variations in User Service Capabilities
<table>
<thead>
<tr>
<th>User Service</th>
<th>Deployment Variations</th>
<th>Variation 1</th>
<th>Variation 2</th>
<th>Variation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident Management</td>
<td>Automated incident detection. May rely on traffic monitoring, direct reports, or both.</td>
<td>Automated detection, verification, response plan recommended to operator</td>
<td>Complete incident management automation. Minimal man-in-loop operator control.</td>
<td></td>
</tr>
<tr>
<td>Travel Demand Management</td>
<td>Demand monitoring and public awareness information</td>
<td>HOV and parking facility administration</td>
<td>Dynamic user fee based on time, route, number of passengers, emissions, etc.</td>
<td></td>
</tr>
<tr>
<td>Emissions Testing and Mitigation</td>
<td>Roadside pollution assessment</td>
<td>Area-wide pollution monitoring</td>
<td>Integrated area-wide air quality strategies</td>
<td></td>
</tr>
<tr>
<td>Highway-Rail Intersection</td>
<td>Standard traffic control devices at Highway-Rail Intersections</td>
<td>Coordination with railroads to enhance traffic management</td>
<td>Immobile vehicle detection and emergency notification</td>
<td></td>
</tr>
<tr>
<td>Public Transportation Management</td>
<td>Centralized schedule monitoring and management</td>
<td>Add off-line analysis/planning and personnel management support</td>
<td>Integrate with traffic control to enhance real-time schedule adherence capability</td>
<td></td>
</tr>
<tr>
<td>En Route Transit Information</td>
<td>Current route/schedule information available. Limited interaction.</td>
<td>Integrated multi-modal information with decision support</td>
<td>Integrated with electronic payment service (ticket/fare card purchase)</td>
<td></td>
</tr>
<tr>
<td>Personalized Public Transit</td>
<td>Reservation-based rider request capability</td>
<td>Vehicle assignment with optimized vehicle schedules</td>
<td>Real-time vehicle assignment</td>
<td></td>
</tr>
<tr>
<td>Public Travel Security</td>
<td>Physical security, surveillance, screening, threat sensors, automated operator authentication, and alarm systems</td>
<td>Operator/traveler initiated silent alarm (vehicle-based)</td>
<td>Alarm capability integrated with personal communications services</td>
<td></td>
</tr>
<tr>
<td>Electronic Payment Services</td>
<td>Electronic toll collection</td>
<td>Electronic fare collection/Electronic parking payment</td>
<td>Integrated electronic payment service supporting all modes</td>
<td></td>
</tr>
<tr>
<td>Commercial Vehicle Operations</td>
<td>Use historical data and WIM to preclear carriers with annual registration</td>
<td>Extended service which preclears those with temporary permits</td>
<td>Vehicle and driver condition automatically monitored and considered in preclearance.</td>
<td></td>
</tr>
<tr>
<td>Automated Roadside Safety Inspection</td>
<td>On-line access to historical safety records for identified vehicles</td>
<td>Vehicle-based diagnostics collected and monitored</td>
<td>Driver status and condition monitored and considered</td>
<td></td>
</tr>
<tr>
<td>On-Board Safety and Security Monitoring</td>
<td>Safety and security monitoring with automated driver notification</td>
<td>Extended to supply notification to carrier</td>
<td>Extended to supply notification to enforcement agencies</td>
<td></td>
</tr>
<tr>
<td>Commercial Vehicle Administrative Processes</td>
<td>Electronic purchase of annual credentials from base state</td>
<td>Add purchase of temporary credentials/permits from other states</td>
<td>Automated mileage and fuel reporting</td>
<td></td>
</tr>
<tr>
<td>Hazardous Material Security and Incident Response</td>
<td>Enforcement and HAZMAT response teams provided with cargo information</td>
<td>Operational focal point to coordinate with other agencies</td>
<td>Real-time HAZMAT incident response coordination</td>
<td></td>
</tr>
<tr>
<td>Freight Mobility</td>
<td>Commercial vehicle and freight equipment location and status monitoring</td>
<td>Integrated route guidance and monitoring for route deviations</td>
<td>Specific specialized fleet capabilities</td>
<td></td>
</tr>
<tr>
<td>Emergency Management</td>
<td>Motorist initiated distress signal</td>
<td>Automated distress signal initiated by vehicle collision</td>
<td>Content added to message for special uses (e.g., HAZMAT)</td>
<td></td>
</tr>
<tr>
<td>Emergency Vehicle Management</td>
<td>Vehicle dispatch support</td>
<td>Route guidance directing driver to the scene</td>
<td>Integration with traffic control to optimize travel times.</td>
<td></td>
</tr>
</tbody>
</table>
The user service variations will be incrementally deployed over time within the different scenarios. Table 3.2-2 presents a preliminary allocation of user service capabilities to scenario and time frame. For purposes of interpreting the table, a user service is considered "fully deployed" when its full capabilities are commercially available for implementation nationwide. In addition, these capabilities are in operational use (not a limited operational test) in at least one location in the country.

As depicted in the table, partial user service capabilities are deployed first, followed by more mature and capable versions until the "full deployment" state is reached. The particular subset of capabilities that are deployed early will vary, depending upon the particular needs and preferences of the local jurisdiction. During evolutionary deployment analysis, these user
service variations will be considered further, along with their relationship to each of the scenario/time frame combinations.

3.2.2 Architecture Approaches to Meet Objectives

In addition to supporting user services, the architecture must be able to accommodate and provide planning support to achieve the full range of architecture development objectives. Approaches have been identified that will result in an architecture that satisfies each of these objectives. To achieve the envisioned benefits, the successful National ITS Architecture must possess the following attributes and be implemented in the following manner:

1. The architecture must accommodate modular designs. The user service functionality must be distributed across modular subsystems to enhance reliability, achieve scalability, and satisfy differing needs. Flexibility in distribution of the functionality within the infrastructure must be allowed to enable a range of centralized and distributed processing options. Different options may be attractive for different scenarios and time frames, but no option should be excluded arbitrarily or through oversight.

2. The interface to the mobile user must be standardized to achieve a seamless, national ITS. Clear allocation of functionality between the infrastructure and mobile subsystems will be specified, along with the range of communications options necessary to implement related ITS services.

3. The architecture must facilitate the sharing of data across subsystems. Data availability is guaranteed by the architecture through identification of database services functionality, which supports data sharing in a manner transparent to the using application. Specific architectural features that enable data interchange are critical for supporting unforeseen future user services.

4. The architecture must allow for flexibility in system designs and operations in order to accommodate jurisdictional preferences. For example, the architecture may support both centralized and distributed traffic control strategies to accommodate differing preferences and existing infrastructures. The choice can be preserved by identifying the required functions and interfaces in an allocation-independent (logical) manner. Alternative partitioning can be used to identify two alternative physical descriptions, and two standard information routing and interface alternatives. This technique will be used to develop the architecture whenever multiple partitioning alternatives exist and have merit.

5. The architecture that is implemented will build upon the existing infrastructure, while providing an upgrade path to accommodate technological advances. To support the resulting multiplicity of implementations with a single architecture, subsystems must be defined in an implementation-independent manner and structured to present a general-purpose interface to the remainder of the system. This application of the well-known "black box" principle must be applied throughout the architecture definition process. This strategy minimizes the architecture's sensitivity to technological variability and evolution.
6. The architecture will be structured to support a wide range of communications medium and protocol implementations. The architecture will include communication interface subsystem(s) that will isolate the communications implementation from the remainder of the architecture. This approach groups all communications-dependent functionality and does the following: 1) improves initial flexibility, since a range of interface subsystems can be identified to meet individual needs, and 2) minimizes the impact of modifying or upgrading a communications system that supports the architecture.

3.3 User Identification

In the previous section, the National ITS Architecture was defined as a set of transportation and communications elements working together to provide services to the end user. To capture the influence of institutional issues on the architecture, a third institutional element may be identified. The relationship of the institutional, transportation, and communication elements can be represented as shown in Figure 3.3-1. Each element includes a distinct subset of the people, capabilities, and constraints associated with individual ITS user services. These architecture elements together provide the required user services and satisfy the ITS goals and objectives.

Eight groupings of the ITS users have been identified and categorized by the USDOT as listed in Table 3.3-1.

In the following sections, the architecture elements are discussed and more fully defined from the perspective of user identification. ITS service developers, operators, maintainers, and users associated with each of the three elements are identified.

Table 3.2-2: User Service Scenario and Time Frame Emphasis

<table>
<thead>
<tr>
<th>User Service</th>
<th>Scenario</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>Travel and Transportation Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Trip Travel Information</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>En Route Driver Information</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Route Guidance</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Ride Matching and Reservation</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Traveler Services Information</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Traffic Control</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Incident Management</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Travel Demand Management</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Emissions Testing and Mitigation</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Highway-Rail Intersection</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Public Transportation Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Transportation Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>En Route Transit Information</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Personalized Public Transit</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Public Travel Security</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Electronic Payment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Payment Services</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
User Service Scenarios

<table>
<thead>
<tr>
<th>User Service</th>
<th>Scenario</th>
<th>Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Inter-Urban</td>
</tr>
<tr>
<td>Commercial Vehicle Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Vehicle Electronic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automated Roadside Safety Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Board Safety and Security Monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Vehicle Administrative Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous Material Security and Incident Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight Mobility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Notification and Personal Security</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Vehicle Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disaster Response and Evacuation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Vehicle Safety Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal Collision Avoidance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral Collision Avoidance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection Collision Avoidance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision Enhancement for Crash Avoidance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Readiness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Crash Restraint Deployment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automated Vehicle Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archived Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance and Construction Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance and Construction Operations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| v : Indicates need for service by scenario. Service likely to be deployed at a full level of service in the scenario |
| ● : Preliminary deployment of a subset of user service capabilities |
| O : Partial deployment of subset capabilities/preliminary deployment of full service capabilities |
| U : Deployment of full service capabilities |

3.3.1 Institutional Element

The Institutional element highlights issues related to ITS that must be addressed by the architecture. The Institutional element reflects the jurisdictional boundaries (municipality, county, state, and federal government agencies) and organizational boundaries within jurisdictions, and includes private companies and public-private ventures. It is in this element that funding is acquired for user services that are implemented. Each jurisdiction and organization will determine the services to provide and the cost. Private companies will provide services that may bridge across jurisdictional boundaries as influenced by market forces. The National ITS Architecture must accommodate each of these political divisions and scenario variations, and conform within the legal and economic constraints associated with this element.
<table>
<thead>
<tr>
<th>Group</th>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Infrastructure Providers</td>
<td>State Agencies</td>
</tr>
<tr>
<td></td>
<td>MPOs/Regional Agencies</td>
</tr>
<tr>
<td></td>
<td>City Agencies</td>
</tr>
<tr>
<td></td>
<td>County Agencies</td>
</tr>
<tr>
<td></td>
<td>Toll Authorities</td>
</tr>
<tr>
<td>Consumers</td>
<td>Commuters</td>
</tr>
<tr>
<td></td>
<td>Emergency Response Users</td>
</tr>
<tr>
<td></td>
<td>Business Users</td>
</tr>
<tr>
<td></td>
<td>Leisure Users</td>
</tr>
<tr>
<td></td>
<td>Special Needs Travelers (Disabled, Elderly, etc.)</td>
</tr>
<tr>
<td>Freight Operations</td>
<td>Trucking Companies</td>
</tr>
<tr>
<td></td>
<td>Air Freight</td>
</tr>
<tr>
<td></td>
<td>Railroads</td>
</tr>
<tr>
<td></td>
<td>Shippers</td>
</tr>
<tr>
<td></td>
<td>Regulators</td>
</tr>
<tr>
<td></td>
<td>Port Authorities</td>
</tr>
<tr>
<td>Passenger Operations</td>
<td>Transit Agencies</td>
</tr>
<tr>
<td></td>
<td>Ridesharing</td>
</tr>
<tr>
<td></td>
<td>Private Fleet Operators (Taxis, etc.)</td>
</tr>
<tr>
<td>Public Safety Services</td>
<td>Emergency Managers</td>
</tr>
<tr>
<td></td>
<td>Police Agencies</td>
</tr>
<tr>
<td></td>
<td>Fire Agencies</td>
</tr>
<tr>
<td></td>
<td>Emergency Medical Services</td>
</tr>
<tr>
<td></td>
<td>Towing Operators</td>
</tr>
<tr>
<td></td>
<td>HAZMAT</td>
</tr>
<tr>
<td>Product/Service Providers</td>
<td>Vehicle Manufacturers</td>
</tr>
<tr>
<td></td>
<td>Maintenance Forces</td>
</tr>
<tr>
<td></td>
<td>Communications and Information Technology Products</td>
</tr>
<tr>
<td></td>
<td>System Integrators and Consultants</td>
</tr>
<tr>
<td></td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td>Businesses Serving People on the Move (Retail, Advertising, etc.)</td>
</tr>
<tr>
<td>Policy/Interest Groups</td>
<td>Federal Agencies</td>
</tr>
<tr>
<td></td>
<td>Local and State Agencies (including Planning Agencies)</td>
</tr>
<tr>
<td></td>
<td>Academia</td>
</tr>
<tr>
<td></td>
<td>Associations/Societies</td>
</tr>
<tr>
<td></td>
<td>Special Interests (Environmental, Safety, etc.)</td>
</tr>
</tbody>
</table>
3.3.2 Transportation Element

The transportation infrastructure includes roadways, vehicles, traffic management centers, ports of entry, traveler information providers, fleet management centers, emergency services facilities, transit facilities, and other infrastructure. These entities are treated as distributed nodes within the transportation element, without regard to physical communications connectivity (which is modeled in the communications element below).

The transportation element will include advanced technologies to provide services that are more convenient and less expensive for the fleet manager and private user. New control systems will allow increased automation, and provide transit buses, automobiles, and trucks with affordable guidance, communications, navigation, and safety equipment. Advanced transportation management functions will enable public and private operating user agencies (city...
and state traffic engineers, transit operators, railroads, and large fleet operators) to coordinate their various subsystems and achieve maximum use of transportation modes and facilities.

Two distinct types of users are associated with this element: 1) transportation professionals who select, operate, and maintain the transportation equipment, and 2) the public at large that uses surface transportation. Transportation professionals include city and state traffic engineers, traffic operations personnel, field maintenance personnel, construction and maintenance personnel, emergency dispatchers, fleet managers, pick-up/delivery drivers, professional drivers, commercial vehicle owners/operators, fixed route transit vehicle operators, paratransit operators, toll operators, customs officers, inspectors, and emergency services personnel. Third party service providers include traveler information providers, map database and/or Geographic Information System (GIS) providers, and system integrators. The infusion of technology into the transportation sector will likely create requirements for additional specialists. The surface transportation user is the public at large and includes pedestrians, bicyclists, motorcyclists, carpoolers, and travelers (drivers and transit users). These users reflect the diversity of the population as a whole; special needs (e.g., the economically disadvantaged, the elderly, and the disabled) must be accommodated to benefit the broadest cross section of the population.

3.3.3 Communications Element

The communications infrastructure is critical to the success of the National ITS Architecture. It provides the transfer of information among different transportation entities using an air interface (wireless communications, such as DSRC, Dedicated Short Range Communication, or wide area wireless (mobile) communications), mobile transceivers, base stations, switches, fixed-point to fixed-point media, etc. Penetration and usage will depend on the cost of communication equipment, the infrastructure, and service. The level of penetration and degree of usage will, in turn, impact the achieved benefit. These benefits and costs are also a function of who will build, operate, and maintain the communication element. The potential development paths include: 1) capitalizing on the private sector’s general-purpose telecommunications investment, 2) developing a new dedicated system with private sector funds, and 3) creating a new infrastructure with public funds, or via a public-private cooperative venture.

The National ITS Architecture will be oriented towards capitalizing on the existing and emerging general-purpose communications infrastructure to reduce cost and risk. The private sector has built and operated an expansive communication infrastructure that can be leveraged to support a significant number of ITS user services. As demand grows and new applications are introduced, this infrastructure will evolve and continue to expand. Using this approach, the financial responsibility associated with deployment is assumed by the company operating a particular network.

The communications element includes a number of service providers that should be included in the list of ITS users. Communication service providers include those who deploy, manage, and maintain communications networks, and those who run the billing and clearinghouse functions associated with electronic payment services. Also included are communications equipment manufacturers and individual commercial communications users who employ the basic communications service to provide value-added information services.
3.3.4 User Service Developers, Operators, and Users

Table 3.3.4-1 presents the results of an analysis that identifies the users for each of the user services. First, the table presents a rough qualitative measure of the relative public benefit and private benefit (market potential) for each service. Based on these measures, the table next identifies the likely influence of the private and public sectors in the funding and development of each of the services. A high public benefit normally indicates public sector involvement in the service, even if market potential is relatively low. Conversely, services that have high private benefit potential but provide lesser benefit to the general public are candidates for private funding, development, and operation. Finally, the table identifies the system operators and system users associated with each service.

Note that the information in this table presents a reasonable starting point, rather than an absolute identification of funding sources and user roles for each service. Detailed analysis of these issues will be provided as the architecture and its deployment is further defined. The following additional factors will be addressed:

1. Market potential has a time dimension that must be considered in evaluating likely private sector participation.

2. Each of the user services includes many functions; these functions should be individually considered and allocated to provide a higher resolution definition of who funds, who builds, and who operates a particular service.

3. The question of "who funds, who builds, and who operates" may differ across jurisdictions, and initiate many creative alternatives such as public-private partnerships, entry by private companies into operation of transportation segments which have traditionally been publicly administered, and public subsidizing/incentivizing of private efforts which achieve public benefit. These, and other creative alternatives, must be considered.

3.4. System Interactions

The identified user services interact with each other and the outside world to varying degrees. An analysis of Table 3.3.4-1 indicates a natural grouping of tightly coupled services (travel planning, traveler information, travel management, travel payment, commercial vehicle operations, advanced vehicle safety systems, and emergency management); the groups themselves are weakly interconnected. Although the National ITS Architecture is viewed as a whole during development of the logical architecture, this interconnectivity pattern hints that the resulting logical architecture will ultimately consist of loosely coupled sub-architectures.

User service inter-relationships and the system's interactions with the outside world will be further analyzed during logical architecture development. The user interacts with ITS to receive user services both directly and indirectly through the choices the user makes.
3.4.1 Direct Interactions

The users identified in sections 3.3 who directly interact with the system fall into two basic categories: 1) system users (e.g., commuters and business users), and 2) system operators (e.g., private fleet operators). Both system users and operators interact with the system by making requests for ITS services. The architecture provides responses to the user requests and also provides unsolicited notifications of anomalies and general system status. Commuters also interact with the system through control of their vehicles. These vehicle control inputs are monitored and augmented by many of the automated vehicle control services. In turn, the commuters are "controlled" by the architecture services indirectly, through services that influence route selection and control right-of-way.

3.4.2 Indirect Interactions

Each system user performs a personal cost-benefit analysis when asking the question "Is this feature or service worth the cost?" This is done for each component of the system, which forces the architects to ask the same question for each system component as it is deployed over time at different locations.

These user choices have two types of implications:

1. Users may buy in to a basic system, but at some point find that the incremental benefits provided by an upgraded service are not worth the incremental cost and fail to support further enhancements.

2. There may be a minimum set of features below which potential users are not interested in the system at the anticipated cost. This may require rapid deployment of several connected services to achieve a core feature set and an acceptable level of user participation.

The system operator has the same type of indirect interaction with ITS services for which the operator is the primary "user". Preference for certain types of equipment and a substantial investment in existing equipment may affect acceptance of fresh approaches or new technologies. The architecture must consider and support this bias when possible, while maintaining upward compatibility with evolving transportation system technologies and designs.
Table 3.3.4-1. ITS Funding Sources, Developers, Operators, and Users

<table>
<thead>
<tr>
<th>User Service</th>
<th>Public Benefit</th>
<th>Private Benefit</th>
<th>Who Funds</th>
<th>Who Builds</th>
<th>Who Operates</th>
<th>Who Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel and Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Trip Travel Information</td>
<td>Moderate</td>
<td>High</td>
<td>Public/Private</td>
<td>Private</td>
<td>Private</td>
<td>Commuters, business users, leisure users, special needs travelers, trucking companies, shippers, private fleet operators, transit agencies, emergency managers, police agencies, fire agencies, emergency medical services, towing operators, HAZMAT, businesses serving people on the move</td>
</tr>
<tr>
<td>En-Route Driver Information</td>
<td>High</td>
<td>High</td>
<td>Infrastructure</td>
<td>Infrastructure</td>
<td>Public/Private</td>
<td>Com_mitters, business users, leisure users, special needs travelers, trucking companies, shippers, private fleet operators, transit agencies, emergency managers, police agencies, fire agencies, emergency medical services, towing operators, HAZMAT, businesses serving people on the move</td>
</tr>
<tr>
<td>Route Guidance</td>
<td>Moderate</td>
<td>High</td>
<td>Infrastructure</td>
<td>Infrastructure</td>
<td>Public/Private</td>
<td>Com_mitters, business users, leisure users, special needs travelers, trucking companies, shippers, private fleet operators, transit agencies, emergency managers, police agencies, fire agencies, emergency medical services, towing operators, HAZMAT, businesses serving people on the move</td>
</tr>
<tr>
<td>Ride Matching and Reservation</td>
<td>High</td>
<td>Moderate</td>
<td>Public</td>
<td>Private</td>
<td>Public</td>
<td>Com_mitters, business users, leisure users, special needs travelers, trucking companies, shippers, private fleet operators, transit agencies, businesses serving people on the move</td>
</tr>
<tr>
<td>Traveler Services Information</td>
<td>Moderate</td>
<td>High</td>
<td>Private</td>
<td>Private</td>
<td>Private</td>
<td>Com_mitters, business users, leisure users, special needs travelers, trucking companies, shippers, private fleet operators, system integrators and consultants, construction, businesses serving people on the move</td>
</tr>
<tr>
<td>User Service</td>
<td>Public Benefit</td>
<td>Private Benefit</td>
<td>Who Funds</td>
<td>Who Builds</td>
<td>Who Operates</td>
<td>Who Uses</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Traffic Control</td>
<td>High</td>
<td>Moderate</td>
<td>Public</td>
<td>Public/Private</td>
<td>Public</td>
<td>Federal agencies, state agencies, MPOs/regional agencies, city agencies, county agencies, emergency managers, police agencies, fire agencies, emergency medical services, HAZMAT, construction, transit agencies, system integrators and consultants, construction</td>
</tr>
<tr>
<td>Incident Management</td>
<td>High</td>
<td>Moderate</td>
<td>Public</td>
<td>Public/Private</td>
<td>Public</td>
<td>Federal agencies, state agencies, MPOs/regional agencies, city agencies, county agencies, emergency managers, police agencies, fire agencies, emergency medical services, HAZMAT, businesses serving people on the move</td>
</tr>
<tr>
<td>Travel Demand Management</td>
<td>High</td>
<td>Moderate</td>
<td>Public</td>
<td>Public/Private</td>
<td>Public</td>
<td>Federal agencies, state agencies, MPOs/regional agencies, city agencies, county agencies, toll authorities, transit agencies</td>
</tr>
<tr>
<td>Emissions Testing and Mitigation</td>
<td>High</td>
<td>Moderate</td>
<td>Public</td>
<td>Public</td>
<td>Public</td>
<td>Federal agencies, state agencies, MPOs/regional agencies, city agencies, county agencies, toll authorities, transit agencies, police agencies</td>
</tr>
<tr>
<td>Highway-Rail Intersection</td>
<td>High</td>
<td>High</td>
<td>Private/ Public/Private/Public Vehicle Private</td>
<td>Infrastructure Private/Public Vehicle Private</td>
<td>Commuters, business users, leisure users, special needs travelers, transit agencies, trucking companies, railroads, shippers, vehicle manufactures, communications and information technology products, federal agencies, academia, special interests</td>
<td></td>
</tr>
<tr>
<td>Public Transportation Management</td>
<td>High</td>
<td>Moderate</td>
<td>Public</td>
<td>Private</td>
<td>Public</td>
<td>Transit agencies</td>
</tr>
<tr>
<td>En-Route Transit Information</td>
<td>High</td>
<td>Moderate</td>
<td>Public</td>
<td>Public/Private</td>
<td>Public</td>
<td>Commuters, business users, leisure users, special needs travelers, transit agencies, businesses serving people on the move</td>
</tr>
<tr>
<td>Personalized Public Transit</td>
<td>High</td>
<td>Moderate</td>
<td>Public</td>
<td>Private</td>
<td>Public</td>
<td>Transit agencies</td>
</tr>
<tr>
<td>User Service</td>
<td>Public Benefit</td>
<td>Private Benefit</td>
<td>Who Funds</td>
<td>Who Builds</td>
<td>Who Operates</td>
<td>Who Uses</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Public Travel Security</td>
<td>High</td>
<td>High</td>
<td>Infrastructure</td>
<td>Public</td>
<td>Public</td>
<td>Transit agencies, commuter, business users, leisure users, special needs travelers, police agencies, towing operators</td>
</tr>
<tr>
<td>Electronic Payment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Toll authority, transit agencies, parking facilities, traveler information service providers</td>
</tr>
<tr>
<td>Electronic Payment Services</td>
<td>Moderate</td>
<td>High</td>
<td>Private</td>
<td>Private</td>
<td>Public/ Private</td>
<td>Toll authority, transit agencies, parking facilities, traveler information service providers</td>
</tr>
<tr>
<td>Commercial Vehicle Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Regulators, shipping, transportation companies</td>
</tr>
<tr>
<td>Commercial Vehicle Electronic Clearance</td>
<td>Moderate</td>
<td>High</td>
<td>Infrastructure</td>
<td>Private</td>
<td>Public</td>
<td>Regulators, shipping, transportation companies</td>
</tr>
<tr>
<td>Automated Roadside Safety Inspection</td>
<td>High</td>
<td>Moderate</td>
<td>Infrastructure</td>
<td>Private</td>
<td>Public</td>
<td>Regulators, shipping, transportation companies</td>
</tr>
<tr>
<td>On-Board Safety and Security Monitoring</td>
<td>High</td>
<td>High</td>
<td>Private</td>
<td>Private</td>
<td>Private</td>
<td>Trucking companies, regulators</td>
</tr>
<tr>
<td>Commercial Vehicle Administrative Processes</td>
<td>Low</td>
<td>High</td>
<td>Infrastructure</td>
<td>Private</td>
<td>Public</td>
<td>Trucking companies, railroads, shipping, port authorities, regulators</td>
</tr>
<tr>
<td>Hazardous Material Security and Incident Response</td>
<td>High</td>
<td>High</td>
<td>Public</td>
<td>Public</td>
<td>Public</td>
<td>HAZMAT, police agencies, fire agencies, emergency managers, emergency medical services, trucking companies</td>
</tr>
<tr>
<td>Freight Mobility</td>
<td>Low</td>
<td>High</td>
<td>Private</td>
<td>Private</td>
<td>Private</td>
<td>Trucking companies, railroads, shipping, port authorities, regulators</td>
</tr>
<tr>
<td>Emergency Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Emergency managers, shipping, transportation companies, emergency medical services, HAZMAT</td>
</tr>
<tr>
<td>Emergency Notification and Personal Security</td>
<td>Moderate</td>
<td>High</td>
<td>Private</td>
<td>Private</td>
<td>Private</td>
<td>Emergency managers, shipping, transportation companies, emergency medical services, HAZMAT</td>
</tr>
<tr>
<td>Emergency Vehicle Management</td>
<td>High</td>
<td>High</td>
<td>Public</td>
<td>Private</td>
<td>Public</td>
<td>Emergency managers, shipping, transportation companies, emergency medical services, HAZMAT</td>
</tr>
<tr>
<td>Disaster Response and Evacuation</td>
<td>High</td>
<td>Moderate</td>
<td>Public</td>
<td>Public</td>
<td>Public</td>
<td>Emergency managers, shipping, transportation companies, emergency medical services, HAZMAT</td>
</tr>
<tr>
<td>User Service</td>
<td>Public Benefit</td>
<td>Private Benefit</td>
<td>Who Funds</td>
<td>Who Builds</td>
<td>Who Operates</td>
<td>Who Operates</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Advanced Vehicle Safety Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal Collision Avoidance</td>
<td>High</td>
<td>High</td>
<td>Private/Public</td>
<td>Private</td>
<td>Private</td>
<td>Commuters, business users, leisure users, special needs travelers, transit agencies, trucking companies, shippers, vehicle manufacturers, communications and information technology products, federal agencies, academia, special interests</td>
</tr>
<tr>
<td>Lateral Collision Avoidance</td>
<td>High</td>
<td>High</td>
<td>Private/Public</td>
<td>Private</td>
<td>Infrastructure/Public/Infrastructure/Public/Private/Infrastructure/Public/Private</td>
<td></td>
</tr>
<tr>
<td>Intersection Collision Avoidance</td>
<td>High</td>
<td>High</td>
<td>Private/Public</td>
<td>Infrastructure/Public/Private/Infrastructure/Public/Private</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision Enhancement for Crash Avoidance</td>
<td>High</td>
<td>High</td>
<td>Private/Public</td>
<td>Private</td>
<td>Private</td>
<td>Commuters, business users, leisure users, special needs travelers, transit agencies, trucking companies, shippers, vehicle manufacturers, communications and information technology products, federal agencies, academia, special interests</td>
</tr>
<tr>
<td>Safety Readiness</td>
<td>High</td>
<td>High</td>
<td>Private/Public</td>
<td>Private</td>
<td>Private</td>
<td>Commuters, business users, leisure users, special needs travelers, transit agencies, trucking companies, shippers, vehicle manufacturers, communications and information technology products, federal agencies, academia, special interests</td>
</tr>
<tr>
<td>User Service</td>
<td>Public Benefit</td>
<td>Private Benefit</td>
<td>Who Funds</td>
<td>Who Builds</td>
<td>Who Operates</td>
<td>Who Uses</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Pre-Crash Restraint Deployment</td>
<td>High</td>
<td>High</td>
<td>Private/Public</td>
<td>Infrastructure Public/Private Vehicle</td>
<td>Infrastructure Private Vehicle</td>
<td>Commuters, business users, leisure users, special needs travelers, transit agencies, trucking companies, shippers, vehicle manufacturers, communications and information technology products, federal agencies, academia, special interests</td>
</tr>
<tr>
<td>Automated Vehicle Operation</td>
<td>High</td>
<td>High</td>
<td>Private/Public</td>
<td>Private/Public</td>
<td>Infrastructure Private Vehicle</td>
<td>Commuters, business users, leisure users, special needs travelers, transit agencies, trucking companies, shippers, vehicle manufacturers, communications and information technology products, federal agencies, academia, special interests, system integrators and consultants, construction, associations/societies</td>
</tr>
<tr>
<td>Information Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archived Data</td>
<td>High</td>
<td>Moderate</td>
<td>Private/public</td>
<td>Private/Public</td>
<td>Private/Public</td>
<td>Commuters, business users, transit agencies, trucking companies, shippers, federal/state/county/city agencies, academia, MPOs/regional agencies, emergency managers, police agencies, fire agencies, emergency medical services, HAZMAT, construction, transit agencies</td>
</tr>
<tr>
<td>Maintenance and Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance and Construction</td>
<td>High</td>
<td>High</td>
<td>Public</td>
<td>Private/Public</td>
<td>Public/Private</td>
<td>Federal/state/county/city agencies, construction companies, construction personnel, maintenance facilities, maintenance personnel, weather service, road maintenance, work zones</td>
</tr>
<tr>
<td>Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.0 OPERATIONAL REQUIREMENTS

Operational requirements define the system processes, information flows, performance parameters, and technical and non-technical constraints which the ITS must incorporate, be developed from, and operationally satisfy. These requirements specify an initial system-level basis from which development of an ITS architecture can take place.

Operational requirements are primarily developed from requirements analyses conducted on user service and program information obtained from the User Service Requirements, dated July 4, 1994 (Attachment 6, to the USDOT IVHS Phase II Architecture Development program, contract no. DTFH61-95-C-00067, dated February 1, 1995), the National ITS Program Plan, dated March 1995, the Archived Data User Service, dated September 21, 1999, the Maintenance and Construction Operations User Service, dated January 26, 2001, and the Disaster Response and Evacuation User Service, dated July 15, 2003. Other source data includes information gathered from transportation-related documents; such as, Department of Transportation’s IVHS Strategic Plan Report to Congress, dated December 18, 1992; Advanced Transportation Systems Program Plan, Draft Caltrans New Technology and Research Program, dated January 9, 1995; and other technology development and early deployment programs.

Operational requirements are organized into system-level requirements, user requirements, performance requirements, and program requirements.

4.1 System-level Requirements

The National ITS Architecture, hereinafter referred to as the "system", shall provide the operational framework whereby currently-identified user services can be configured and seamlessly integrated to provide reliable, accurate, and timely travel information and services for users of transportation facilities. In order to provide this framework, the system must meet a number of constraints:

- Accommodate a phased implementation to take advantage of technological/societal changes over the next 20 years.
- Integrate with the existing infrastructure.
- Account for the existing political infrastructure.
- Allow for distributed authority.
- Account for vested interest groups.
- Incorporate the existing commercial vehicle operating procedures.
- Use a mixture of private and government funding.
- Allow for a mixture of public, private, and commercial ownership.

These constraints lead to a series of high-level requirements for the National ITS Architecture. These requirements are derived through analysis including the experience of transportation experts and architecture development team members. Adopted as
principles to guide the architecture development process, these principles should do the following:

- Provide flexible control.
- Leverage existing infrastructure.
- Offer incremental levels of system (services).
- Provide a highly modular system.
- Utilize detailed, open standardization to maximize interoperability, reduce market entry risk.
- Provide an easy upgrade path for future technology insertion.
- Facilitate information exchange.
- Provide wireless encryption and database access control requirements.
- Require vehicle-to-roadside communication common interfaces for vehicles.
- Emphasize in-vehicle equipment and safety.
- Build upon existing institutional arrangements.
- Offer a wide variety of choices to assure equity, avoid new public liabilities, and facilitate private industry profitability.
- Balance number of choices with manageability and marketable differences.
- Focus on user acceptance.

Formally, these system-level requirements are described by paragraphs 4.1.1 through 4.1.8.

4.1.1 Service Availability and Quality

The system shall provide the framework for user services that can be configured, implemented, and integrated to provide reliable, accurate, and seamless user/service information delivery, and exchanges in a timely, cost-effective manner. The system shall provide a consistent level of high service quality between service providers, geographic locations, or system configurations where compatible.

4.1.2 Service Interoperability

The system shall provide the framework and integration necessary for service interoperability between user services within a native service provider, or between different service providers.

4.1.3 Service Continuity

The system shall provide the framework and integration necessary for service continuity between service providers offering the same or similar services.

4.1.4 Service Information Management and Distribution

The system shall support user service information collection, processing, management, archiving, coordination (i.e., sharing), and distribution across multiple transportation
(user) services. The system shall provide for information access control, updates, protection, and distribution for those services that utilize information processing systems.

4.1.5 Service Growth, Flexibility, and Expansion

The system shall support growth, flexibility, and expansion of user services and interactions with external, non-ITS service elements. The system shall provide the capability to accommodate or incorporate existing technology and infrastructures for currently identified user services, future ITS user services, and any interactions with external, non-ITS services. The system shall also provide a comparable level of integration, operational continuity, and performance.

4.1.6 Equity of Service and Support

The system shall provide an equitable distribution of costs and benefits among service providers, a wide demographic segment of society (i.e., elderly, disabled, financially disadvantaged, etc.), and geographic regions (i.e., urban, interurban, rural, warm, or cold climates). The system shall support cost-effective operations and maintenance to conform with service provider resources and consumer needs.

4.1.7 Service Evolution

The system shall support the evolutionary nature of user services to accommodate advancements in technology, transportation and communications infrastructure, and resource development, public/private partnership arrangements, interjurisdictional cooperative agreements, and the dynamic service marketplace. The system shall support seamless service transitions from development and operational tests, early deployments, independent and future service incorporation, and service and technology upgrades.

4.1.8 Variations in Service Configurations

The system shall allow for variations in service configurations, operations, and technologies based upon service deployment priorities. The system shall provide integrated configurations, ranging from a single-user service to the entire 33 services. The system shall also promote interchangeability of service components provided by multiple original equipment manufacturers (OEM) and licensed vendors, through application of industry-standard and formal interfaces to the maximum extent possible. The system shall be flexible to support various service configurations, based upon variations that include service area priorities, market conditions, and environmental scenarios (i.e., urban, interurban, and rural).

4.2 User Requirements

This section provides a list of user requirements based upon analysis of the system-level requirements and identified users.
4.2.1 **Generic**

4.2.1.1 **User Services**

The system shall provide the complete set of user services.

4.2.1.2 **System Interface**

The system shall provide the user with multiple methods of interfacing with the system. For example, a traveler could plan his trip initially via one of the independent service providers. The traveler, once en-route to the destination, would have the opportunity to use the in-vehicle system to receive travel advisories and updated route guidance.

4.2.1.3 **User Interface**

The system’s user interfaces shall be designed for ease of understanding and use, to minimize ambiguity, and to provide the proper level of detail to match the user’s needs. For example, the kiosks located at area malls provide a menu of services that are easily discernible and selectable by a potential traveler.

4.2.1.4 **Seamless Travel**

The system shall appear to the user to be seamless across modes and geography. For example, as a traveler transitions from a commuter train to a city bus, no extraordinary actions would be required to continue the trip (i.e., no additional bus pass purchases, no further trip planning, unless so desired).

4.2.1.5 **Seamless Payment**

The system shall have a payment system that is seamless to the user. For example, a single debit card could provide toll, parking, and public transportation payments. In the National ITS Architecture, this function is managed by the Traveler Card terminator. This device, similar to a smart card, may also hold and update the traveler’s information such as personal profiles or trip histories.

4.2.1.6 **Types/Levels of Service**

The system shall offer types and levels of service according to the user’s desires. For example, a traveler would have the ability to plan a simple bus trip to the mall, or perform elaborate route selection functions necessary to travel across the country.

4.2.1.7 **Mobility**

The system shall increase mobility and the reliability/predictability of mobility (e.g., reduce travel time variances). For example, the system would provide up-to-date
information on public transportation schedule adherence, which would inform the traveler of any delays.

4.2.1.8 Privacy

The system shall provide provisions to protect the user’s privacy (e.g., vehicle probe use would be cooperative and voluntary, and would not include any personal data).

4.2.1.9 Incremental Benefit

The system shall provide benefits that increase both incremental deployment and individual investment. For example, a simple radio would provide a driver with current traffic congestion data. However, if sufficient in-vehicle equipment were purchased, the driver would then be able to receive custom travel advisory information and dynamic route guidance.

4.2.2 Driver

4.2.2.1 Equipment Affordability

The system’s in-vehicle equipment cost to the driver shall be affordable. A range of price/performance options shall be supported. Like most new technologies, Automatic Vehicle Location systems and onboard vehicle probe systems that communicate with roadside short range communications systems will initially be expensive. As the technology matures, the price will decrease while performance increases.

4.2.3 Traveler

4.2.3.1 Choices

The traveler shall have a choice of routes, modes, departure times, parking, and other services appropriate to traveler needs. For example, at a mall kiosk, a traveler might have a choice of a taxi or a bus, with departure times every half-hour.

4.2.3.2 Multiple Modes

The traveler shall have the option to plan trips requiring multiple transportation modes. For example, a traveler may plan a trip that involves bus transportation to a subway station, followed by subway transportation to the downtown district. This requirement satisfies both driving travelers (drivers) using mixed modality travel, and non-driving travelers (non-drivers) using ITS services.

4.2.4 Operator

4.2.4.1 Traffic Management
The system shall provide the traffic management operator with the functions required to effectively manage the traffic system.

4.2.4.2 Transit Operations

The system shall provide transit operations personnel with the functions required to effectively operate the transit system.

4.2.4.3 External Interfaces

The system shall provide the traffic management and transit operations personnel with the appropriate communication methods for communicating with external entities, such as emergency management centers and the weather service.

4.2.5 Fleet Manager

4.2.5.1 Government Interface

The system shall provide the fleet-freight manager the capability to interface with appropriate government agencies regarding permits, licenses, etc.

4.2.5.2 Vehicle Management

The system shall provide the fleet-freight manager with current fleet status on vehicle locations and routes.

4.2.6 Other Users

The system shall provide interfaces for other external users of ITS (e.g., information brokers, financial clearinghouses, etc.). The system shall support unambiguous interchange and reuse of data and information throughout all functional areas. For example, an interface shall be provided for event promoters to notify traffic managers of upcoming events.

4.3 Performance Requirements

This section includes performance requirements that influence characteristics of the system. The requirements have been analyzed for each user service. Performance requirement ranges will be used to reflect performance sensitivities to implementation. Many of these “requirements” are actually guidelines to support evaluation of the architecture and evaluatory designs. Especially for information services, no real-time deadlines actually exist. The listed requirements provide one estimate of performance necessary for a useful service in a typical scenario.

The numbers should not be interpreted as minimum performance measures that will be levied on the implementer as firm constraints. Performance requirement values
included here are provided without detailed analysis. These values can change significantly as further analysis and refinement is done, as the system matures, and system evaluation proceeds. The value "real-time" is used loosely to denote a time between instantaneous and a few seconds, while current is used loosely to denote a time between "real-time" and a few minutes.

4.3.1 Pre-Trip Travel Information

4.3.1.1 Communication

The system shall support two-way communication between data collection systems and data processing systems. The system shall also support communication between data processing systems and users.

4.3.1.2 Information Management

The system shall support collection, management, and access to current information on available services, traffic conditions, and trip planning. Pre-trip travel information includes current public transportation data and highway condition data. This is based on estimates of accessing current automated services (e.g., web based banking services and automated teller machines).

4.3.1.3 Processing Time

Depending on the level of service, response time could range between 1 second and a few minutes.

4.3.1.4 Presentation

The system shall present travel information to properly fitted equipment.

4.3.2 En-Route Driver Information

4.3.2.1 Communication

The system shall support "real-time" communications to transfer current information to the driver. Information shall be transferred between information advisory sources, properly equipped vehicles, signs, short-range communications equipment, and in-vehicle signing equipment.

4.3.2.2 Driver Advisory Presentation

The system shall provide accurate driver advisory information. The system shall provide in-vehicle signing, traveler information, and emergency information within a necessary range for the communication media. This could be from 100 to 3000 feet.
between the transmitter and vehicle for short-range communications, to a few miles for highway advisory information.

4.3.2.3 In-Vehicle Presentation

The system shall present in-vehicle advisory information and signing in audible and/or visible forms. The system shall, when considering this requirement, conform to safety and human factors.

4.3.3 Route Guidance

4.3.3.1 Communication

The system shall support "real-time" two-way communications from the transportation infrastructure to properly equipped vehicles.

4.3.3.2 Vehicle Location

The system shall provide vehicle location with a position accuracy appropriately meeting or exceeding the guidance requirements. Some level of service may require only a very coarse range (e.g., 300 feet for simple warnings such as upcoming exits or turns), while other levels of service require more precise information (1-20 feet) to identify the correct lane.

4.3.3.3 Processing Time

Depending on the level of service, the response time could range between a fraction of a second and a few minutes.

4.3.3.4 Presentation

The system shall provide "real-time" presentation to properly equipped vehicles.

4.3.3.5 Autonomous Route Guidance

The system will support autonomous route guidance in the absence of two-way communication.

4.3.4 Ride Matching and Reservation

4.3.4.1 Communication

The system shall support two-way communication between traffic information sources, ride matching and reservation services, billing services, and ride sharing personnel.
4.3.4.2 Information Management

The system shall support collection, management, and access to current information on riders, transportation providers and billing.

4.3.4.3 Processing Time

Depending on level of service, response time could range between 1 second and a few minutes.

4.3.4.4 Presentation

The system shall present ride matching and reservation information to properly fitted equipment.

4.3.5 Traveler Service Information

4.3.5.1 Communication

The system shall support two-way interactive communications between traveler service providers, sponsors, and users.

4.3.5.2 Information Management

The system shall support collection, management, and access to current database information on traveler services.

4.3.5.3 Processing Time

Depending on the level of service, response time could range between 1 second and a few minutes.

4.3.5.4 Presentation

The system shall present traveler service information to properly equipped interactive equipment.

4.3.6 Traffic Control

4.3.6.1 Communication

The system shall support two-way communications between control devices, traffic control / management centers, and surveillance equipment.

4.3.6.2 Information Management
The system shall support "real-time" collection, management, and access of current traffic surveillance and control parameters.

4.3.6.3 Processing

The system shall provide processing of area-wide surveillance data, incident reports, and historical time-of-day patterns.

4.3.6.4 Control

The system shall provide traffic control through time-of-day/week (TOD/TOW), traffic responsive, and traffic demand prediction techniques.

4.3.6.5 Presentation

The system shall present current traffic condition data.

4.3.6.6 Surveillance Information

The system shall provide selective surveillance information.

4.3.7 Incident Management

4.3.7.1 Communication

The system shall support "real-time" two-way communications between information sources, responding agencies, and traffic management centers.

4.3.7.2 Surveillance Information

The system shall access current traffic surveillance information on a real-time basis, as available.

4.3.7.3 Incident Detection

The system shall reliably detect incidents. Incident detection time shall be optimized to provide the appropriate trade-off between probability of detection and false alarm rate. A system goal is to detect severe incidents (life threatening) with a high probability (e.g., greater than 95 percent) within a short time (e.g., less than 2 minutes). False alarm rates depend on verification capabilities. Significant verification facilities would allow for a higher detection of false alarm rates. The goal is to have no false alarms after verification.

4.3.7.4 Incident Verification
The system shall provide "real-time" incident verification capabilities (i.e., video, electromagnetic, etc.) for control, presentation, and verification by system operators.

4.3.7.5 *Incident Classification*

The system shall provide incident classification capabilities to classify the type of incident allowing the operator to plan a proper response.

4.3.7.6 *Incident Response*

The system shall facilitate incident response formulation and execution when commanded by the system operator. Potential response options include notifying the appropriate agencies (i.e., law enforcement, emergency medical services, fire, HAZMAT, railroads, towing agencies, etc.).

4.3.7.7 *Incident Coordination*

The system shall facilitate incident response coordination through "real-time" information coordination/dissemination and status updates.

4.3.7.8 *Incident Record keeping*

The system shall accept system operator inputs for incident record keeping and collect incident response status for subsequent evaluation.

4.3.7.9 *Incident Information Management*

The system shall support "real-time" collection, management, and access of incident information statistics, responding agencies and resource status, response actions and status, and traffic network status.

4.3.7.10 *Presentation*

The system shall present incident detection status in "real-time".

4.3.8 *Travel Demand Management*

4.3.8.1 *Communication*

The system shall support real-time communications between transportation operators, traffic management centers, traffic surveillance equipment, parking areas, traveler status, etc.

4.3.8.2 *Information Management*
The system shall support collection, management, and access of current database information on travel services, traffic conditions, roadway and weather status, and trip planning.

4.3.8.3 Processing Time

The system shall provide current travel demand computation and travel demand management.

4.3.8.4 Presentation

The system shall present current travel demand information.

4.3.9 Emissions Testing and Mitigation

The system shall support roadside emissions collection and testing in order to identify vehicles emitting levels of pollutants that exceed state, local, or regional standards. The system shall support emissions mitigation by providing information to drivers or fleet operators, enabling them to take corrective action. The system shall also perform wide area pollution monitoring and provide air quality information to other agencies.

4.3.10 Highway-Rail Intersection

Highway-rail intersection safety is interrelated with several other user services. Refer to the Traffic Control, Driver Advisory, Incident Management, and Intersection Collision Avoidance User Services for other applicable requirements.

4.3.10.1 Communication

The system shall provide "real-time" communication between the wayside interface equipment, the highway-rail intersection, and appropriately equipped affected vehicles.

4.3.10.2 Supported Vehicles

The system shall support appropriately equipped vehicles at operating highway speeds.

4.3.10.3 Route Guidance Information

The system shall provide train schedules, with projected HRI closure times and duration, to drivers to alleviate schedule delays and include planned route coordination.

4.3.10.4 Driver Advisory Presentation

The system shall provide accurate driver advisory information. The system shall provide in-vehicle signing within a necessary range for the communication media. This...
could be from 100 to 3000 feet between the transmitter and vehicle for short-range communications, to a few miles for highway advisory information.

4.3.10.5 Safety Monitoring

The system shall provide system monitoring and provide critical safety problem or potential emergency warnings, with updates every few seconds.

4.3.10.6 Vehicle Detection Information

The system shall provide "real-time" vehicle detection information.

4.3.10.7 In-Vehicle Infrastructure Condition Warning

The system shall provide "real-time" detection and warning of unsafe infrastructure conditions from within the vehicle.

4.3.10.8 Display and Safety Warnings

The system shall provide monitoring displays with continuous monitoring of safety-critical systems, and provide safety-critical problem warnings or potential emergency warnings to the driver in near "real-time". These display and safety warnings shall be provided to rail operators and traffic management on exception basis or at periodic intervals, and to the inspection facility following query receipt.

4.3.11 Public Transportation Management

4.3.11.1 Communication

The system shall provide "real-time" communication between appropriately equipped public transportation vehicles, public transportation facilities, and emergency assistance facilities.

4.3.11.2 Vehicle Identification

The system shall provide vehicle identification capability.

4.3.11.3 Vehicle Location

The system shall provide vehicle location, with the capability to support fixed route and flexible route scheduling.
4.3.11.4 Route Guidance Information

The system shall provide public transportation vehicle operators and dispatchers with current optimum routing information, to alleviate schedule delays and include planned route connection coordination.

4.3.11.5 Traffic Signal Priority

The system shall include an integrated traffic control capability that provides traffic signal priority as required, to adjust the schedule of transit vehicles at traffic signals.

4.3.11.6 Data Collection

The system shall support the current collection of data for planning and scheduling of public transit operations, and operator and maintenance personnel management.

4.3.11.7 Information Management and Analysis

The system shall support off-line transit information management and analysis of data for planning and scheduling of public transit operations, and operator and maintenance personnel management.

4.3.11.8 Maintenance Vehicle Management

The system shall collect and analyze vehicle mileage data for planning and scheduling of vehicle maintenance.

4.3.11.9 Transit Vehicle Scheduling

The system shall keep a transit vehicle inventory and assign vehicles based on availability, operational status, and suitability to provide the service.

4.3.12 En-Route Transit Information

4.3.12.1 Communication

The system shall support "real-time" communication between transit advisory sources and properly fitted equipment (i.e., advisory information should be nearly instantaneous for significant use by transit and high-occupancy vehicles).

4.3.12.2 Information Management

The system shall support collection, management, and access to current information on traffic conditions and trip planning.
4.3.12.3 Processing Time

Depending on the level of service, response time could range between 1 second and a few minutes.

4.3.12.4 Presentation

The system shall present transit advisory information to properly equipped interactive equipment.

4.3.13 Personalized Public Transit

4.3.13.1 Communication

The system shall provide "real-time" communication between appropriately equipped transportation vehicles, transportation facilities, and passengers.

4.3.13.2 Vehicle Identification

The system shall provide vehicle identification capability.

4.3.13.3 Vehicle Location

The system shall provide vehicle location with position accuracy capable of supporting demand-responsive transit operations and dispatch.

4.3.13.4 Routing Information

The system shall provide transit vehicle operators and dispatchers with current routing information in response to passenger reservations, and provide passengers with near real-time reservation confirmation and imminent arrival notification.

4.3.13.5 Service Hours

The system shall provide continuous access to service.

4.3.13.6 Service Optimization

The system shall provide optimum passenger ride time and convenience.

4.3.13.7 Passenger Pick-up

The system shall provide vehicle assignment to pick-up passengers within a 4-block radius of all trip origination sites in the area.

4.3.13.8 Passenger Information
The system shall provide real-time access to passenger information.

4.3.14 Public Travel Security

4.3.14.1 Communication

The system shall provide "real-time" communication from appropriately equipped facilities and mobile units to central dispatch or the local police.

4.3.14.2 Surveillance Information

The system shall provide continuous audio/visual surveillance service, both on-board transit vehicles and at key locations, including rest areas, transit stops and stations, and transit facilities (i.e., transit yards and shops), to monitor activities, incidents, and potential threats. In addition, the system shall include the capability for biometric analysis of video images gathered via visual surveillance methods.

4.3.14.3 Threat Sensor Information

The system shall include threat sensors such as chemical, biological, explosives, and radiological sensors on-board transit vehicles (bus, rail car) and at key locations, including transit stations, and transit facilities (i.e., transit yards and shops), to monitor activities, incidents, and potential threats.

4.3.14.4 Object and Intrusion Detection

The system shall include sensors for metal (and other object) detection on-board the public transit vehicle (bus, rail car), and at key locations, including rest areas, transit stops and stations, and transit facilities (i.e., transit yards and shops), to detect contraband, such as knives, guns, and other potential weapons. In addition, the system shall include a method of intrusion detection (or motion detection) at transit facilities (i.e., transit yards and shops), as well as video, audio, intrusion (or motion) detection, and infrastructure integrity monitoring of transit infrastructure (rail track, bridges, tunnels, bus guideways, etc.).

4.3.14.5 Transit Vehicle Operator Authentication

The system shall provide the capability for authentication of vehicle operators prior to operating a transit bus or rail vehicle.

4.3.14.6 Remote Disable of Transit Vehicle

The system shall include the capability to remotely disable a transit vehicle (bus or transit rail).
4.3.14.7 Deviation of Transit Vehicle from Planned Route

The system shall include the capability to identify when a transit vehicle has deviated from its planned route and schedule.

4.3.14.8 Alarms

The system shall provide "real-time", traveler-activated alarms, to include all physical areas related to public travel. In addition, the system shall provide silent or audible activated alarms on-board public transit vehicles capable of activation by the transit vehicle operator.

4.3.14.9 Passenger Identification and Location

The system shall provide passenger identification, location, and incident status information within 5 minutes of message receipt.

4.3.15 Electronic Payment Services

4.3.15.1 Communication

The system shall support "real-time" communication between electronic payment facilities, electronic payment services, and appropriately equipped vehicles.

4.3.15.2 Information Management

The system shall support collection, management, and access of current driver and rider eligibility information. The system shall support off-line storage of driver levels and ridership levels for specific routes requiring transit system operator scheduling and route planning.

4.3.15.3 Transaction Processing

The system shall verify electronic payment to the traveler while the traveler waits. Typical response times should be between 1 and 10 seconds.

4.3.16 Commercial Vehicle Electronic Clearance

4.3.16.1 Vehicle-Infrastructure Communication

The system shall provide two-way "real-time" communication between appropriately equipped commercial vehicles and the infrastructure.

4.3.16.2 Supported Vehicles/Carriers
The system shall support interstate/intrastate commercial vehicles/carriers operating at highway speeds.

4.3.16.3 Detection Range and Accuracy

The system shall provide vehicles/carriers identification and weight. This could be provided upstream from the inspection facility, to allow time for appropriate “pull-in” messages.

4.3.16.4 Information Management

The system shall support collection, management, access, and coordination of current information at roadside inspection facilities.

4.3.16.5 Safety and Legal Requirements

The system shall require all vehicles, drivers, and commercial vehicle operations provided by a motor carrier meet both safety and legal requirements.

4.3.17 Automated Roadside Safety Inspection

4.3.17.1 Vehicle-Infrastructure Communication

The system shall provide two-way "real-time" communication between appropriately equipped commercial vehicles and the infrastructure.

4.3.17.2 Supported Vehicles/Carriers

The system shall support interstate/intrastate commercial vehicles/carriers at operating highway speeds.

4.3.17.3 Information Management

The system shall support collection, management, access, and coordination of current information at automated roadside inspection facilities.

4.3.17.4 Brakes Inspection

The system shall provide brakes inspection after the vehicle/carrier enters the inspection facility.

4.3.17.5 Vehicle Diagnostics

The system shall provide vehicle diagnostics at automated roadside inspection facilities.
4.3.17.6 Driver Diagnostics

The system shall provide driver diagnostics at automated roadside inspection facilities.

4.3.18 On-Board Safety and Security Monitoring

4.3.18.1 Vehicle-Infrastructure Communication

The system shall provide two-way, "real-time" communication between appropriately equipped commercial vehicles and the infrastructure. The system shall support "real-time" on-board sensor monitoring and warning control.

4.3.18.2 Supported Vehicles/Carriers

The system shall support interstate and intrastate commercial vehicles/carriers at operating highway speeds.

4.3.18.3 Critical On-Board Subsystem Monitoring and Storage

The system shall monitor vehicle component conditions and driver conditions on-board the vehicle, provide data storage every few minutes, and provide this information to support fleet maintenance planning.

4.3.18.4 Display and Safety Warnings

The system shall provide monitoring displays with continuous monitoring of safety-critical systems, and provide safety-critical problem warnings or potential emergency warnings to the driver in near "real-time". These display and safety warnings shall be provided to the fleet manager on exception basis or at periodic intervals, and to the inspection facility following query receipt.

4.3.18.5 Monitor On-Board Sensors

The system shall monitor on-board sensors to detect a breach or tamper event on the vehicle, freight container or trailer, and shall provide vehicle integrity event information to the driver and carrier’s dispatch function. The system shall detect deviations from the commercial vehicle’s planned location and movement, and vehicle use by unauthorized users.

4.3.18.6 Driver and Vehicle Identification and Assignment

The system shall provide driver and vehicle identification to the inspection facility, and shall plan a driver/commercial vehicle/freight container or trailer assignment for a specific trip.
4.3.18.7 Information Management

The system shall support collection, management, and access of current information at roadside inspection facilities.

4.3.19 Commercial Vehicle Administrative Processing

4.3.19.1 Vehicle-Infrastructure Communication

The system shall provide two-way, "real-time" communication between appropriately equipped commercial vehicles and the infrastructure.

4.3.19.2 Supported Vehicles/Carriers

The system shall support interstate and intrastate commercial vehicles/carriers at operating highway speeds.

4.3.19.3 Border Pre-clearance

The system shall provide pre-clearance processing at international borders. The system shall provide interfaces with the appropriate border inspection administration systems. The system shall support "real-time" processing of commercial vehicle pre-clearance information, credentials, and cargo status.

4.3.19.4 Mileage Recording

The system shall provide mileage recording.

4.3.19.5 Electronic Credential Transaction

The system shall provide electronic purchase of credential.

4.3.20 Hazardous Material Security and Incident Response

4.3.20.1 Classify the Hazardous Material

The system shall identify, verify, and classify the hazardous material.

4.3.20.2 Vehicle-Infrastructure Communication

The system shall provide two-way, "real-time" communication between appropriately equipped vehicles carrying hazardous materials and the infrastructure.

4.3.20.3 Supported Vehicles/Carriers
The system shall support interstate and intrastate commercial vehicles/carriers of hazardous materials at operating highway speeds, in transportation zones where hazardous materials are allowed.

4.3.20.4 HAZMAT Incident Management

The system shall include the capability to provide enforcement and HAZMAT response teams with timely and accurate information on cargo contents when the vehicle is involved in an incident. The system shall provide the capability for operators to coordinate with other agencies and response services during an incident.

4.3.20.5 HAZMAT Security Function

The system shall allow tracking of the location of a vehicle with a security sensitive HAZMAT shipment by the vehicle’s dispatch function. The system shall identify when the security sensitive HAZMAT shipment has deviated from the planned route.

4.3.20.6 HAZMAT Vehicle Driver Authentication

The system shall provide the capability for authentication of drivers of HAZMAT vehicles prior to operating a vehicle carrying hazardous materials. The system shall include the capability to notify the vehicle’s dispatch function if an unauthorized driver attempts to operate the vehicle, and to safely disable the vehicle.

4.3.21 Freight Mobility

4.3.21.1 Communication

The system shall provide "real-time" communication between commercial vehicles, commercial vehicle drivers, dispatchers, commercial fleet management centers, and intermodal transportation providers.

4.3.21.2 Route Guidance Information

The system shall plan routes or trip itineraries for an asset (i.e. freight container, trailer, and/or commercial vehicle). The system shall identify when the asset has deviated from the planned route or trip itinerary, and shall notify authorized freight data users. In addition, the system shall provide commercial drivers and dispatchers with current routing information in response to congestion or incidents.

4.3.21.3 Vehicle Identification

The system shall provide vehicle and/or cargo identification.

4.3.21.4 Vehicle Location
The system shall provide vehicle and/or cargo location. The system shall provide the capability to monitor and track the location and movements of freight containers or trailers by authorized freight data users.

4.3.21.5 Fleet Maintenance

The system shall support equipment maintenance planning and repair.

4.3.22 Emergency Notification and Personal Security

4.3.22.1 Communication

The system shall provide real-time communication from appropriately equipped vehicles to at least one response unit at all times from any location in the United States.

4.3.22.2 Vehicle Location

The system shall provide vehicle location with position accuracy available to the communication media. This location information may be very coarse when provided by triangulation on cellular type communications (e.g., 125 feet), or very precise when provided by GPS with differential correction (e.g., less than 1 foot), which includes latitude, longitude, and altitude.

4.3.22.3 Emergency Notification

The system shall provide manual and automatic initiation of emergency notification within 1 minute.

4.3.22.4 Critical In-Vehicle Subsystem Monitoring

The system shall monitor vehicle component conditions from inside a vehicle every few minutes, and, for critical emergency condition cases, automatically send the appropriate distress signal.

4.3.22.5 Surveillance Information from Critical Infrastructure

The system shall provide continuous audio/visual surveillance of critical infrastructure (such as bridges, tunnels, interchanges, management centers, etc.), rest stops and picnic areas, park-and-ride areas, tourism and travel information areas and emergency pull off areas to monitor activities, incidents, and potential threats.

4.3.22.6 Threat Sensor Information from Critical Infrastructure

The system shall include threat sensors such as chemical, biological, explosives, and radiological sensors on critical infrastructure (e.g. bridges, tunnels), rest stops, park-and-ride areas, etc. to monitor activities, incidents, and potential threats.
4.3.22.7 Object and Intrusion Detection of Critical Infrastructure

The system shall include sensors for metal (and other object) detection and intrusion detection (or motion detection) on critical infrastructure (e.g., bridges, tunnels), rest stops, park-and-ride areas, etc. In addition, the system shall include sensors to monitor infrastructure integrity (bridges, tunnels, etc.).

4.3.22.8 Alarms in Secure Areas

The system shall provide "real-time", traveler-activated alarms, to include all physical areas related to public travel.

4.3.23 Emergency Vehicle Management

4.3.23.1 Communication

The system shall provide "real-time" communication between the following: the dispatcher and the traffic signal, the appropriately equipped emergency vehicles and appropriately equipped affected vehicles, and the appropriately equipped emergency vehicles and traffic signal controls for right-of-way signal preemption.

4.3.23.2 Emergency Fleet Management

The system shall provide "real-time" emergency vehicle fleet management.

4.3.23.3 Vehicle Identification

The system shall provide vehicle identification.

4.3.23.4 Vehicle Location

The system shall provide vehicle location.

4.3.23.5 Traffic Signal Preemption

The system shall provide "real-time" traffic signal preemption by maintaining current information on signal timing, emergency vehicle locations, and emergency vehicle routing.
4.3.24 Disaster Response and Evacuation

4.3.24.1 Communication

The system shall provide "real-time" two-way communication between emergency personnel, emergency management centers, remote command centers, and emergency vehicles.

4.3.24.2 Response Coordination

The system shall facilitate emergency response coordination through “real-time” information coordination and dissemination and status updates.

4.3.24.3 Evacuation Coordination

The system shall facilitate emergency evacuation coordination through “real-time” information coordination and dissemination and status updates.

4.3.24.4 Information Management

The system shall support collection, management, and access of current information at emergency operations centers and remote command centers.

4.3.24.5 Processing Time

Depending on the level of service, response time could range between 1 second and a few minutes.

4.3.25 Longitudinal Collision Avoidance

4.3.25.1 Supported Vehicles

The system shall support appropriately equipped vehicles at operating highway speeds.

4.3.25.2 Front or Rear of Vehicle Sensing

The system shall provide sensing of potential or impending collisions, or dangers to the front/rear of the vehicle, with range depending on closing rate and vehicle dynamics.

4.3.25.3 Driver Collision Avoidance Action Elicitation

The system shall provide the driver a collision avoidance action elicitation, when sensing a potential or impending collision, or danger to the front/rear of the vehicle.
4.3.25.4 Temporary Automatic Control

The system shall provide temporary automatic control of the vehicle, when sensing an impending collision.

4.3.25.5 Autonomous Intelligent Cruise Control

The system shall provide autonomous intelligent cruise control of the vehicle.

4.3.25.6 Vehicle and Driver Monitoring

The system shall provide critical in-vehicle subsystem and driver monitoring, with updates every few seconds.

4.3.25.7 Display and Safety Warning

The system shall provide system monitoring display and critical safety problem or potential emergency warnings, with updates every few seconds.

4.3.26 Lateral Collision Avoidance

4.3.26.1 Supported Vehicles

The system shall support appropriately equipped vehicles at operating highway speeds.

4.3.26.2 Blind-spot Sensing

The system shall provide sensing of vehicles in the driver's blind spots.

4.3.26.3 Blind-spot Information and Display

The system shall provide "real-time" information and display the presence of vehicles in the driver's blind spots.

4.3.26.4 Potential collision due to lane change warning

The system shall provide "real-time" warning of potential collisions due to lane change or merging activities initiated by the driver.

4.3.26.5 Driver Collision Avoidance Action Elicitation

The system shall provide the driver a collision avoidance action elicitation within 3 seconds after sensing a potential or impending collision, or danger due to lane changing or merging activities initiated by the driver.
4.3.26.6 Temporary Automatic Control

The system shall provide temporary automatic control of the vehicle, when sensing an impending collision.

4.3.26.7 Lane Maintenance

The system shall provide proper lane maintenance of the vehicle.

4.3.26.8 Vehicle and Driver Monitoring

The system shall provide critical in-vehicle subsystem and driver monitoring, with updates every few seconds.

4.3.26.9 Display and Safety Warning

The system shall provide system monitoring display and provide critical safety problem or potential emergency warnings, with updates every few seconds.

4.3.27 Intersection Collision Avoidance

4.3.27.1 Supported Vehicles

The system shall support appropriately equipped vehicles at operating highway speeds.

4.3.27.2 Vehicle Detection

The system shall provide vehicle detection.

4.3.27.3 Vehicle Detection Information

The system shall provide "real-time" vehicle detection information for direct vehicle use and/or driver display.

4.3.27.4 Driver Collision Avoidance Action Elicitation

The system shall provide the driver an intersection collision avoidance action elicitation within 3 seconds after sensing of potential or impending intersection collision.

4.3.27.5 Temporary Automatic Control

The system shall provide temporary automatic control of the vehicle to avoid an intersection collision.
4.3.27.6 Vehicle and Driver Monitoring

The system shall provide critical in-vehicle subsystem and driver monitoring, with updates every few seconds.

4.3.27.7 Display and Safety Warning

The system shall provide system monitoring display and provide critical safety problem or potential emergency warnings, with updates every few seconds.

4.3.28 Vision Enhancement for Crash Avoidance

4.3.28.1 In-vehicle Sensing

The system shall provide "real-time" in-vehicle sensing for outside scene imaging.

4.3.28.2 Visual Display

The system shall provide a "real-time" visual display of an image. These displays may include graphical representations of the image.

4.3.28.3 Vehicle Monitoring

The system shall provide critical in-vehicle subsystem monitoring, with updates every few seconds.

4.3.28.4 Display and Safety Warning

The system shall provide system monitoring display and provide critical safety problem or potential emergency warnings with updates every few seconds.

4.3.29 Safety Readiness

4.3.29.1 Supported Vehicles

The system shall support appropriately equipped vehicles at operating highway speeds.

4.3.29.2 Impaired Driver Warning

The system shall provide in-vehicle monitoring of various driver performance features and displays with updates every few seconds.
4.3.29.3 Vehicle Condition Warning

The system shall provide in-vehicle monitoring of safety-critical components and provide warnings with updates every few seconds.

4.3.29.4 In-Vehicle Infrastructure Condition Warning

The system shall provide "real-time" detection and warning of unsafe infrastructure conditions from within the vehicle.

4.3.29.5 Vehicle Monitoring

The system shall provide critical in-vehicle subsystem monitoring, with updates every few seconds.

4.3.29.6 Display and Safety Warning

The system shall provide system monitoring display and provide critical safety problem or potential emergency warnings, with updates every few seconds.

4.3.30 Pre-Crash Restraint Deployment

4.3.30.1 Supported Vehicles

The system shall support appropriately equipped vehicles at operating highway speeds.

4.3.30.2 Anticipate Imminent Collision

The system shall provide "real-time" imminent collision anticipation information.

4.3.30.3 Activate Passenger Safety Systems

The system shall provide "real-time" automated activation of passenger safety systems.

4.3.30.4 Vehicle Monitoring

The system shall provide critical in-vehicle subsystem monitoring, with updates every few seconds.

4.3.30.5 Display and Safety Warning

The system shall provide system monitoring display and provide critical safety problem or potential emergency warnings, with updates every few seconds.
4.3.31 Automated Vehicle Operation

4.3.31.1 Infrastructure-Vehicle Communication

The system shall provide two-way, "real-time" communication between the infrastructure and appropriately equipped vehicles.

4.3.31.2 Vehicle-Vehicle Communication

The system shall provide two-way, "real-time" communication between appropriately equipped vehicles.

4.3.31.3 Supported Vehicles

The system shall support appropriately equipped vehicles at operating highway speeds.

4.3.31.4 Automated Highway System (AHS)

The system shall provide an AHS as the "real-time" automated vehicle operations operating platform.

4.3.31.4.1 Automated Check-In

The system shall provide automated check-in for access onto the AHS within 3 seconds, or as determined by the National Automated Highway System Consortium.

4.3.31.4.1.1 Vehicle Qualification

The system shall provide diagnostics to determine vehicle qualification for access to the AHS.

4.3.31.4.2 Automated Vehicle Control

The system shall provide automated control of appropriately equipped vehicles on the AHS.

4.3.31.4.2.1 Vehicle and Driver Monitoring

The system shall provide critical in-vehicle subsystem and driver monitoring, with updates every few seconds.

4.3.31.4.2.2 Display and Safety Warning

The system shall provide system monitoring display and provide critical safety problem or potential emergency warnings, with updates every few seconds.
4.3.31.4.3 Automated Check-Out

The system shall provide automated checkout for exit from the AHS at designated points.

4.3.31.4.3.1 Driver Readiness

The system shall provide "real-time" driver alertness testing, within an accuracy of 99.99% prior to automated checkout.

4.3.31.5 Partially Automated Highway System (PAHS)

The system shall provide the PAHS as a transitional, partially automated, "real-time" vehicle operation.

4.3.31.5.1 Critical Vehicle Subsystems

The system shall provide "real-time" automated vehicle control service functions to implement transitional levels of performance.

4.3.31.5.2 Vehicle and Driver Monitoring

The system shall provide continuous critical in-vehicle subsystem and driver monitoring, with updates every few seconds.

4.3.31.5.3 Display and Safety Warning

The system shall provide system monitoring display and critical safety problem or potential emergency warnings, with updates every few seconds.

4.3.32 Archived Data

4.3.32.1 Historical Data Archive

The system shall provide a historical data archive for ITS data.

4.3.32.1.1 Data Attributes

The system shall provide metadata for the Historical Data Archive as well as meta-attributes repositories.

4.3.32.1.2 Security

The system shall provide security for ITS data in the Historical Data Archive.
4.3.32.1.3 Online Analysis

The system shall support online analysis by users to analyze data from multiple sources or to acquire data for their off-line applications.

4.3.32.2 Operational Data Control (ODC)

The system shall provide ODC to ensure integrity of the operational data received and collected.

4.3.32.2.1 Data Storage

The system shall support reception and storage of ITS operational data as it is received from the source.

4.3.32.2.2 Data Collection

The system shall provide data collection of operational data as defined by the user.

4.3.32.2.3 Quality Control

The system shall be able to apply user-defined quality control verification and annotate the results to the applicable meta files.

4.3.32.2.4 Data Attributes

The system shall provide meta-attributes indicating the methods used on the data to be stored, such as summarization, aggregation methodologies, and transformations.

4.3.32.2.5 Data Security

The system shall provide security for ITS data in the ODC.

4.3.32.2.6 Data Fusion

The system shall support data fusion on replicated data for end users in real-time.

4.3.32.3 Data Import and Validation (DIV)

The system shall support importing historical data from the ODC.

4.3.32.3.1 Data Attributes

The system shall provide meta data for the DIV as well as meta-attributes repositories.
4.3.32.3.2 Data Cleansing

The system shall support cleansing of imported data to preserve source privacy attributes and assignment of anonymous identifiers in the archive.

4.3.32.3.3 Data Mining

The system shall support pre-defined data mining of the imported data in an archive.

4.3.32.3.4 Data Fusion

The system shall support data fusion on imported data for end users in real-time.

4.3.32.3.5 Error Notification

The system shall support notifying the source system of potential data or equipment errors.

4.3.32.4 Automatic Data Historical Archive (ADHA)

4.3.32.4.1 Data Schema

The system shall provide an archive schema for all data entering a permanent data archive.

4.3.32.4.1.1 Schema Privacy

The system shall remove any identifiers or characteristics, which can be traced to an individual citizen or private firm, and replace them with unique system-developed anonymous identifiers.

4.3.32.4.2 Data Management

The system shall automatically format schemas and meta-attributes per a predetermined process.

4.3.32.4.3 Data Integrity

The system shall permanently store historical archives and provide replications to end-users.

4.3.32.4.4 Data Attributes

The system shall provide meta data for the ADHA as well as meta-attributes repositories.
4.3.32.4.5 User Defined Data

The system shall provide data in the AHDA per user specified data processes automatically.

4.3.32.5 Data Warehouse

The system shall provide a data warehouse distribution which acts as the data source for the ITS community.

4.3.32.5.1 Data Products

The system shall support generation of data products, such as reports and forms for planning, operations, safety and research agencies.

4.3.32.5.2 Data Administration

The system shall provide a single point of administration for the archived data system.

4.3.32.6 ITS Community Interface

The system shall provide users with an ITS community interface for the specification and retrieval of data products.

4.3.32.6.1 Data Security

The system shall manage user access and security through cleansing of data to preserve source privacy attributes.

4.3.32.6.2 Online Analysis

The system shall support users selecting online analytical functions to produce their data products.

4.3.32.6.3 Data Schema

The system shall provide a user interface to the data warehouse data schema in order to define their data products.

4.3.33 Maintenance and Construction Operations

4.3.33.1 Maintenance Vehicle Fleet Management

4.3.33.1.1 Monitoring and Tracking Vehicles
The system shall provide current location, historical locations and status information of maintenance vehicle fleets, construction vehicle fleets, and specialized service vehicles.

4.3.33.1.2 Route Scheduling and Dispatching

The system shall provide route scheduling and dispatching of maintenance vehicle fleets, construction vehicle fleets, and specialized service vehicles.

4.3.33.1.3 Data Communications

The system shall support real-time data communications between dispatchers and operators of public and contracted maintenance, construction and specialized service vehicles.

4.3.33.1.4 On-Board Vehicle Sensors

The system shall provide monitoring of vehicle diagnostics and operating conditions of maintenance vehicle fleets, construction vehicle fleets, and specialized service vehicles via on-board vehicle sensors as well as automatically scheduling preventive and corrective vehicle maintenance.

4.3.33.1.5 Monitoring Roadway Conditions and Vehicle Operating Status

The system shall provide monitoring of transportation infrastructure via on-board vehicle sensors.

4.3.33.1.6 Roadway Information to Dispatchers and Operators

The system shall provide weather and roadway information regarding potential and actual roadway problems to dispatchers and operators of maintenance vehicle fleets, construction vehicle fleets, and specialized service vehicles.

4.3.33.1.7 Coordination with Other Vehicles

The system shall provide coordination through communication to other maintenance vehicle fleets, construction vehicle fleets, and specialized service vehicles.

4.3.33.2 Roadway Management

4.3.33.2.1 Services

The system shall monitor traffic, road surface, and environmental conditions and forecast traffic and road surface conditions to support management of routine and hazardous road condition remediation and to communicate changes to current conditions.
4.3.33.2.2 Roadway Operations

The system shall provide efficient and effective roadway operations during normal and severe weather or adverse travel conditions.

4.3.33.2.3 Planning

The system shall plan and forecast, proactive and reactive, year-round roadway management activities.

4.3.33.2.4 Roadway Treatment

The system shall determine the need for forecasted and scheduled roadway treatment taking into account weather and roadway information.

4.3.33.2.5 Remediation of Hazardous Road Conditions

The system shall manage resources necessary to perform hazardous road condition remediation.

4.3.33.2.6 Roadway Material Application

The system shall track the amount of material applied to the roadway in order to compare with the plan or forecast.

4.3.33.2.7 Material Monitoring

The system shall monitor the amount and availability of materials at storage facilities.

4.3.33.2.8 Maintenance Crew Dispatch

The system shall support dispatching of maintenance crews.

4.3.33.2.9 Remote Automated Roadway Surface Systems

The system shall monitor, manage and control remote, automated systems that affect the roadway surface.

4.3.33.2.10 Archiving

The system shall archive data for use in performance monitoring activities.

4.3.33.3 Work Zone Management and Safety

4.3.33.3.1 Monitor and Control Work Zone Activity
The system shall monitor, manage and direct activity in the vicinity of work zones.

4.3.33.3.1.1 *Automated Speed Enforcement*

The system shall provide support for automated speed enforcement around work zones.

4.3.33.3.1.2 *Automated Lane Changing*

The system shall provide support for automated lane changing techniques to divert vehicles around work zones.

4.3.33.3.1.3 *Archiving*

The system shall provide support for archiving field data.

4.3.33.3.1.4 *AHS Merging Strategies*

The system shall provide support for developing Automated Highway System (AHS)-merging strategies by processing the collected field data.

4.3.33.3.2 *Data Management*

The system shall manage, collect and disseminate data regarding work zones and work zone activities.

4.3.33.3.2.1 *Correlate Activities*

The system shall correlate planned activities with actual work.

4.3.33.3.2.2 *Reports*

The system shall support preparation of work zone activity reports.

4.3.33.3.3 *Traveler Information*

The system shall communicate reliable, accurate, and timely traveler information.

4.3.33.3.4 *Vehicle Intrusion Warnings*

The system shall support the provision of vehicle intrusion warnings.

4.3.33.3.5 *Work Zone Crew Tracking*

The system shall be able to track individual crew movements.
4.3.33.4 Roadway Maintenance Conditions and Work Plan Dissemination

4.3.33.4.1 Routing, Scheduling, and Resource Allocation Coordination

The system shall perform routing, scheduling and resource allocation by coordinating information on planned maintenance and construction activities, including work zone information, and unplanned remediation activities, such as inclement weather responses.

4.3.33.4.2 Inter-Agency Significant Event Coordination

The system shall support inter-agency coordination of response and scheduling of resources for significant events with broad impact, like natural disasters, major incidents, and large planned or seasonal events.

4.4 System Constraints and Life Cycle Factors

The system shall support user services within the following system constraints and life cycle factors. These specialized requirements define the functional "boundaries" or constraints the system must operate within, to provide reliable, accurate, and seamless services. Life cycle factors define requirements for the "quality" of service needed to satisfy system goals and objectives.

4.4.1 Service Availability

The system shall support configurations and technologies that provide cost-effective implementation and reliable services. System support for service availability shall provide a consistent level of quality between service providers, geographic locations, or compatible system configurations. When services are offered, the system shall meet 99% overall service availability. Service availability shall be measured in terms of overall operating time to service downtime, due to equipment failures and routine maintenance.

4.4.2 Reliability

The system shall support service reliability in proportion to associated criticality levels (i.e., safety, information transactions, advisories/warnings, etc.). The system shall balance service criticality with the cost associated with deployment, operation, and maintenance of the service (i.e., allocated, opportunity, time, flexibility, and risk).

4.4.3 Maintainability

The system shall incorporate maximum use of standardized, commercial-off-the-shelf (COTS) products and technical services. “Standardized” is defined as modular products and technical services that provide a service function through industry-standard interfaces. The system shall support maintainability factors associated with a system maintenance program, including OEM/licensed vendor technical support, funding, budgeting, and service provider staffing resources. These factors provide general
requirements for a system maintenance concept, types of maintenance, and maintenance services.

4.4.3.1 Maintenance Concept

The system shall support a modular maintenance concept. The system shall incorporate technologies, equipment, components, and subsystems that support modular designs for ease of maintenance by service providers. The system shall incorporate a minimum of two levels of maintenance: 1) service-level, and 2) component-level. Service-level maintenance consists of those activities associated with service provider operations and maintenance (i.e., organizational removal and replacement of hardware components and software, functional information database updates, service sales, staffing resources, etc.). Component-level maintenance consists of detailed hardware and software maintenance that cannot be performed at the service level. This includes OEM and vendor maintenance and repair.

4.4.3.2 Types of Maintenance

The system shall support functional and system maintenance categories within each maintenance level. Functional maintenance consists of activities associated with functional operation of the system or service (i.e., recurring database updates, cost/billing accounting, staffing, etc.). System maintenance shall consist of activities associated with system hardware, software maintenance, and repair actions.

For hardware, three levels of maintenance priority are addressed: 1) remedial maintenance to restore operations due to equipment malfunctions and failures; 2) preventive maintenance to minimize the probability of failure during the product design life; and 3) modification/reconstruction maintenance to remedy manufacturing or design flaws, or to incorporate hardware improvements that enhance overall equipment characteristics and performance.

For software, a continuous level of maintenance shall be addressed to maintain, improve, and enhance system operations. For service deployment, system software shall incorporate, as a minimum, the following characteristics to minimize software failures and problems, and reduce their impact to manageable proportions.

- Employ verified or proven software packages.
- Utilize software packages that are written in a compiler-level language.
- A complete set of accurate software documentation, including user's manuals and compiler listings.

4.4.3.3 Maintenance Services

The system shall incorporate commercial-off-the-shelf (COTS) modules, equipment, components, and subsystems that can be maintained through native (service provider)
maintenance organizations. An alternative maintenance approach shall be to have maintenance tasks performed by purchased services.

4.4.4 System Safety

The system shall incorporate safety features to protect individuals, property, and the surrounding infrastructure environment.

4.4.4.1 Critical Operations

The system shall isolate safety-critical operations into manageable modules. For these modules, the system shall incorporate adequate safety features (i.e., redundancy, limited access, lockout, information presentation limits, etc.) to minimize the probability and impact of safety-related failures.

4.4.4.2 Operator Interfaces

The system shall provide special consideration to operator interfaces/human factors for all aspects of user services (i.e., in-vehicle, roadside, public access, control center environments, etc.).

4.4.4.3 Safe Service Operation

The system shall provide safe service operation in all modes of operation. The system shall provide safe and available service operation in degraded modes of operation and performance.

4.4.5 Producibility

The system shall support service configurations so that service components can be produced in a cost-effective manner.

4.4.5.1 Design for Producibility

The system shall support designs that incorporate standardized technologies, interface definitions, and processes that promote cost-effective system operations and maintenance. The system shall provide for evolutionary durability.

4.4.5.2 Industry-Standard Interfaces

The system shall incorporate maximum use of industry-standard interfaces to allow module, component, and subsystem interchangeability between multiple OEMs/licensed vendors.

4.4.6 Supportability
The system shall incorporate services, technologies, equipment, components, and subsystems when a compatible product base is supported through multiple OEMs/licensed vendors. “Support” is defined as OEM/licensed vendor technical services, and product warranties and repair, to extend a minimum duration of five years from the date of deployment or procurement. System support shall be consistent with the product’s design life.

4.4.7 Human Factors

The system shall provide travel-related information necessary to support a range of mobile (i.e., in-vehicle, personal, etc.), fixed, portable facility (i.e., roadside, public access, etc.), and command/coordination facility display devices (i.e., traffic management, fleet management, transit management, etc.). Information shall be conveyed through audio, visual, and tactile forms. These range from simple binary warning lights, indicator lights, auditory alarms, and messages, to text message displays, graphics displays, video, and virtual displays.

4.4.7.1 System Response

The system shall respond to user information requests and service requests in a timely manner. Information value shall consist of adequate recency, accuracy, and frequency as required by the user's tasks and travel conditions.

4.4.7.2 Information and Service Utility

The system shall provide sufficiently reliable information and services to gain the user’s trust and achieve long-term system acceptance and market viability.

4.4.7.3 Training Support

The system shall support standardized training approaches, familiarizing users, maintenance technicians, operators, managers, and other personnel with proper use of system/service devices, components, technologies, operations, and management strategies. The skills required for system operation may be obtained through the service implementer, independent sources, and on-line training features.

4.4.8 System Security and Integrity

The system shall provide adequate protection for critical service information, safety-critical components and modules, and high-value operational-critical components. Subsystems shall be provided protection from fraud, misuse, inadvertent or unauthorized access, and malicious tampering or destruction. The system shall provide adequate protection from inadvertent and malicious attacks against modification/loss of high-value information, equipment, and facilities. The system shall employ means and methods to detect and preclude unauthorized access, tampering, and destruction of critical system/service information and components.
4.4.9 System Compatibility

The system shall provide nationwide user service compatibility when comparable services are offered. The system shall provide industry-standard interfaces to accept and incorporate compatible service provider components, equipment, subsystems, and infrastructures as a means to demonstrate system openness. The system shall incorporate industry-standard or formal interface definitions to promote interoperability between user services, components, equipment, and subsystems. The system shall promote component, equipment, and subsystem interchangeability between OEM and licensed vendors.

4.4.10 System Environments

The system shall operate in general environments (e.g., topographical), operational temperatures, humidity, lightning/electrostatic discharge, radio frequency interference/electromagnetic interference, wind/salt/sand/dust/contaminants, and other environmental effects commonly found in urban, interurban, and rural settings across the continental United States.

4.5 Program Requirements

The system shall configure user services to incorporate system deployment, institutional, political, and legal requirements. These services shall include provisions to promote cost-effective implementation, operations and maintenance, market acceptance, service viability, inter-jurisdictional cooperation, political support, and equitable distribution of legal responsibility.

4.5.1 Deployment Requirements

The system shall support an evolutionary deployment strategy that targets market needs to achieve early benefits, promote cost-effective operations, and support maintenance approaches for evolution durability.

4.5.1.1 Public/Private Sector Opportunities and Benefits

The system shall accommodate public and private sector opportunities and benefits to promote early deployment and continued support. The system shall promote development of user services based on user and market needs, and provide immediate financial and mobility benefits to a developing market.

4.5.1.2 Adoption of Service Standards

The system shall support a range of technologies and provide a basis for adoption of standards (i.e., industry-wide, formal, etc.). The system shall incorporate technologies that stress upward capability, including compatible standards and open architecture.
features. These features provide the ability to upgrade an earlier deployment system, without completely replacing the original system.

4.5.1.3 Pre-planned Product/Service Improvements

The system shall incorporate pre-planned product improvement changes. The system shall incorporate deployment approaches to capitalize on future technology and service advancements. The system shall incorporate refinements relating to performance, producibility, reliability, availability, maintainability, supportability, unit cost, life cycle cost, and extended service life.

4.5.2 Implementation Requirements

The system shall provide a user service framework to promote and distribute immediate user benefits and affordable market costs.

4.5.2.1 Utilization of Existing Technologies and Infrastructures

The system shall be structured around existing technology "building blocks" (e.g., communication systems, sensors, geographic databases), many of which can be deployed as upgradeable, stand-alone subsystems.

4.5.2.2 Private Sector Investment

The system shall provide opportunities for private sector investment. Identifiable areas will aid the private sector in making investments in key aspects of the system. These aspects promote competition and the removal of barriers, and reduce development costs. These aspects also improve public-private partnerships and cooperation.

4.5.2.3 Implementation Flexibility

The system shall support a range of implementations that meet various local funding and market constraints.

4.5.3 Institutional Requirements

The system shall support user service arrangements to promote inter-organizational cooperation and coordination.

4.5.3.1 Regional Management

The system shall provide for regional approaches to infrastructure management. The system shall provide for regional user service management approaches to coordinate hand-offs and information sharing, depending on user service needs.
4.5.3.2 Transportation Planning

Transportation planning among local traffic systems shall be coordinated within the system architecture. The system shall be designed to provide joint approaches for addressing problems and priorities, and provide solutions among the participating organizations during transportation planning.

4.5.3.3 Inter-organizational Cooperation

The system shall provide opportunities to facilitate cooperative relationships within and between organizations.

4.5.3.4 Institutional Conformance

The system shall abide by statewide and metropolitan area planning and federally mandated management systems relationships.

4.5.4 Political Provisions

The system shall incorporate current governing legislation (e.g. SAFETEA-LU and Clean Air Act provisions). The system shall promote avenues for Government leadership to develop and disseminate given standards for those areas with compelling Government interest.

4.5.5 Legal Provisions

The system shall include provisions to limit and distribute liability among users, public service providers, private service providers, and system OEMs/licensed vendors. Manufacturers and government must submit to a common agreement with respect to service liability. The system shall promote development of a legislative framework, limiting and distributing liabilities, removing barriers to private sector participation, and promoting public-private partnerships.

4.5.5.1 Liability Legislation

The government shall implement appropriate legislation. Local, state, and federal legislation shall be implemented in agreement with system development, addressing conflicting or divergent views, interests, and objectives.

4.5.5.2 Inter-jurisdictional Enforcement

The system shall accommodate special legal arrangements that cross jurisdictional lines. The system shall accommodate multiple authorities for traffic law enforcement.