Type: Safety
Groups:- V2I Safety
Stop Sign Gap Assist
The Stop Sign Gap Assist (SSGA) safety application is intended to improve safety at non-signalized intersections where only the minor road has posted stop signs. This application includes both onboard (for connected vehicles) and roadside signage warning systems (for non-equipped vehicles). The application will help drivers on a minor road stopped at an intersection understand the state of activities associated with that intersection by providing a warning of unsafe gaps on the major road. The SSGA application collects all available sensor information (major road, minor road, and median sensors) data and computes the dynamic state of the intersection in order to issue appropriate warnings and alerts.
Enterprise
SVG Diagrams: Installation Operations Maintenance Certification
PNG Diagrams: Installation Operations Maintenance Certification
Business Interaction Matrix:
Stop Sign Gap Assist Operations Stage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vehicle Owner | Driver | Vehicle OBE Owner | Roadway Owner | RSE Owner | RSE Operator | ITS Roadway Equipment Owner | ITS Roadway Operator | Traffic Manager | RSE Traffic Gap Assist Provider | Remote Vehicle OBE Owner | Vehicle Gap Assist Provider | |
Vehicle Owner | Vehicle Usage Agreement | Vehicle OBE Usage Agreement | Application Usage Agreement | |||||||||
Driver | Vehicle Usage Agreement | Expectation of Information Provision | Expectation of Information Provision | Presumption of Correct Operation | ||||||||
Vehicle OBE Owner | Vehicle OBE Usage Agreement | Expectation of Information Provision | Expectation of Information Provision | Expectation of Data Provision | ||||||||
Roadway Owner | Service Delivery Agreement | |||||||||||
RSE Owner | Expectation of Information Provision | Service Delivery Agreement | Operations Agreement | Information Exchange Agreement | Information Exchange Agreement | Application Usage Agreement | ||||||
RSE Operator | Operations Agreement | |||||||||||
ITS Roadway Equipment Owner | Information Exchange Agreement | Operations Agreement | Information Exchange Agreement | |||||||||
ITS Roadway Operator | Expectation of Information Provision | Operations Agreement | ||||||||||
Traffic Manager | Information Exchange Agreement | Information Exchange Agreement | ||||||||||
RSE Traffic Gap Assist Provider | Application Usage Agreement | |||||||||||
Remote Vehicle OBE Owner | Presumption of Correct Operation | Expectation of Data Provision | ||||||||||
Vehicle Gap Assist Provider | Application Usage Agreement |
Includes Enterprise Objects:
Enterprise Object | Description |
---|---|
Application Certification Entity | The body that determines whether an application may be deployed and operated in the Connected Vehicle Environment. This entity's composition, the requirements it applies and the procedures it uses to verify those requirements may vary with application type. For example, applications with human safety component (crash avoidance, movement assistance etc.) may have stringent requirements and extensive testing in a variety of conditions, while applications that provide strictly mobility functionality may have far less testing requirements; possibly as little as just making sure the application doesn't interfere with any other applications. |
Device Certification Entity | The body that determines whether a device may be deployed and operated in the Connected Vehicle Environment. This entity's composition, the requirements it applies and the procedures it uses to verify those requirements may vary with device type. |
Driver | The 'Driver' represents the person that operates a vehicle on the roadway. Included are operators of private, transit, commercial, and emergency vehicles where the interactions are not particular to the type of vehicle (e.g., interactions supporting vehicle safety applications). The Driver originates driver requests and receives driver information that reflects the interactions which might be useful to all drivers, regardless of vehicle classification. Information and interactions which are unique to drivers of a specific vehicle type (e.g., fleet interactions with transit, commercial, or emergency vehicle drivers) are covered by separate objects. |
Federal Regulatory | Federal regulatory bodies that have legal authority to control and/or provide input to policies regulating transportation infrastructure and operations. This includes entities such as the Federal Communications Commission and US Department of Transportation. |
ITS Certification Entity | The body that determines whether an ITS device or application may be deployed and operated in the transportation environment. This entity's composition, the requirements it applies and the procedures it uses to verify those requirements may vary with device and application type. Typically not a formal body, assigned on a project-by-project basis depending on the type of infrastructure involved. Since ITS projects are locally-focused (typically state or smaller), the entities that are part of this body are typically those with operational jurisdiction where the ITS is installed (e.g., state or local DOTs, state or local maintenance managers etc.) |
ITS Roadway Equipment Owner | The entity that owns the Roadway ITS equipment. |
ITS Roadway Operator | The entity that operates the Roadway ITS equipment. |
Remote Vehicle OBE Owner | The owner of the Remote Vehicle OBE |
Roadway Owner | The owner of the roadway proximate to which roadside equipment will be/is installed. |
Roadway Traffic Gap Assist Installer | Application Component Installers are specified more by role than by function. Installers are responsible for the installation of the application component, which may require a support system, and may entail agreements and relationships between end users and application providers. |
Roadway Traffic Gap Assist Maintainer | Application Component Maintainers are specified more by role than by function. Maintainers are responsible for the maintenance (configuration changes, patches and updates, hardware repairs) of the application component, which may require a support system, and may entail agreements and relationships between end users and application providers. |
Roadway Traffic Gap Assist Provider | Application Component Providers are specified more by role than by function. Providers are responsible for the development of the application component, including initial creation, enhancement and bug fixes. Delivery of the application to the end user may require relationships with other entities (installers, maintainers) if the provider chooses not to fulfill those roles. |
RSE Deployer | The entity responsible for the deployment, operations and maintenance of roadside equipment. |
RSE Maintainer | The entity that maintains the roadside equipment, including its hardware and operating system software, but not applications software. |
RSE Operator | The entity that operates roadside equipment in the transportation environment. |
RSE Owner | The owner of roadside equipment. |
RSE Provider | The "RSE Provider" is the entity that develops and (presumably) sells roadside equipment to other entities for deployment and research. |
RSE Traffic Gap Assist Installer | Application Component Installers are specified more by role than by function. Installers are responsible for the installation of the application component, which may require a support system, and may entail agreements and relationships between end users and application providers. |
RSE Traffic Gap Assist Maintainer | Application Component Maintainers are specified more by role than by function. Maintainers are responsible for the maintenance (configuration changes, patches and updates, hardware repairs) of the application component, which may require a support system, and may entail agreements and relationships between end users and application providers. |
RSE Traffic Gap Assist Provider | Application Component Providers are specified more by role than by function. Providers are responsible for the development of the application component, including initial creation, enhancement and bug fixes. Delivery of the application to the end user may require relationships with other entities (installers, maintainers) if the provider chooses not to fulfill those roles. |
State Regulatory | State regulatory bodies that have legal authority to control and/or provide input to policies regulating vehicles, transportation infrastructure and operations. This includes entities like Departments of Motor Vehicles, property tax authorities and tolling agencies. |
TMC Traffic Gap Assist Installer | Application Component Installers are specified more by role than by function. Installers are responsible for the installation of the application component, which may require a support system, and may entail agreements and relationships between end users and application providers. |
TMC Traffic Gap Assist Maintainer | Application Component Maintainers are specified more by role than by function. Maintainers are responsible for the maintenance (configuration changes, patches and updates, hardware repairs) of the application component, which may require a support system, and may entail agreements and relationships between end users and application providers. |
TMC Traffic Gap Assist Provider | Application Component Providers are specified more by role than by function. Providers are responsible for the development of the application component, including initial creation, enhancement and bug fixes. Delivery of the application to the end user may require relationships with other entities (installers, maintainers) if the provider chooses not to fulfill those roles. |
Traffic Manager | The entity responsible for the management of traffic, both freeway and arterial. |
Vehicle Gap Assist Installer | Application Component Installers are specified more by role than by function. Installers are responsible for the installation of the application component, which may require a support system, and may entail agreements and relationships between end users and application providers. |
Vehicle Gap Assist Maintainer | Application Component Maintainers are specified more by role than by function. Maintainers are responsible for the maintenance (configuration changes, patches and updates, hardware repairs) of the application component, which may require a support system, and may entail agreements and relationships between end users and application providers. |
Vehicle Gap Assist Provider | Application Component Providers are specified more by role than by function. Providers are responsible for the development of the application component, including initial creation, enhancement and bug fixes. Delivery of the application to the end user may require relationships with other entities (installers, maintainers) if the provider chooses not to fulfill those roles. |
Vehicle Manufacturer | The entity that builds, assembles, verifies and validates the Vehicle in which the Vehicle OBE will eventually operate. |
Vehicle OBE Manufacturer | The entity that builds, assembles, verifies and validates the Vehicle OBE. This can be an OEM-equipped OBE, retrofit or aftermarket equipment. |
Vehicle OBE Owner | The entity, individual, group or corporation that owns the Vehicle On-Board equipment. This could be the same as the Vehicle Owner, but it could be a third part that licenses the use of the OBE to the Owner. |
Vehicle Owner | The individual, group of individuals or corporate entity that is identified as the registered owner of the Vehicle under state law. |
Includes Resources:
Resource | Description |
---|---|
Application Component Certification Requirements | The requirements that define the functionality, performance and operational environment of an application component. Certification Requirements must be met in order for an application to be installed in the CVE. |
Backoffice Service Development System | The systems used to develop backoffice (center) hardware and software components of applications. |
Backoffice Service Installation System | The systems used to install and configure backoffice (center) hardware and software components. |
Backoffice Service Maintenance System | The systems used to maintain and upgrade backoffice (center) hardware and software components. |
Device Certification Requirements | The requirements that define the functionality, performance and operational environment of a connected vehicle device. Certification Requirements must be met in order for the device to be granted the credentials necessary to operate in the Connected Vehicle Environment. |
Field Component Development System | The system used in a backoffice environment to develop and test the field component of the application. |
Field Component Installation System | The system used to install a field component of a connected vehicle application. |
Field Component Maintenance System | The system used to install and configure changes and updates to the field component of the application. This system is capable of acquiring and reporting diagnostic information about the application's configuration and performance. |
ITS Certification Requirements | The requirements that define the functionality, performance and operational environment of an ITS device or ITS application. Applicability varies with jurisdictions, but typically devices and applications must meet pre-defined acceptance criteria prior to usage in the transportation environment. |
ITS Field Component Development System | The system used in a backoffice environment to develop and test the ITS field component of the application. |
ITS Field Component Installation System | The system used to install a field component of a connected vehicle application. |
ITS Field Component Maintenance System | The system used to install and configure changes and updates to the ITS field component of the application. This system is capable of acquiring and reporting diagnostic information about the application's configuration and performance. |
ITS Roadway Equipment | 'ITS Roadway Equipment' represents the ITS equipment that is distributed on and along the roadway that monitors and controls traffic and monitors and manages the roadway itself. In CVRIA, this physical object represents all of the other ITS field equipment that interfaces with and supports the Connected Vehicle Roadside Equipment (RSE). This physical object includes traffic detectors, environmental sensors, traffic signals, highway advisory radios, dynamic message signs, CCTV cameras and video image processing systems, grade crossing warning systems, and ramp metering systems. Lane management systems and barrier systems that control access to transportation infrastructure such as roadways, bridges and tunnels are also included. This object also provides environmental monitoring including sensors that measure road conditions, surface weather, and vehicle emissions. Work zone systems including work zone surveillance, traffic control, driver warning, and work crew safety systems are also included. |
Mobile Component Development System | The system used in a backoffice environment to develop and test the mobile component of the application. |
Mobile Component Installation System | The system that interacts with the Vehicle OBE other mobile device and installs the mobile component of the application. |
Mobile Component Maintenance System | The system used to configure changes and updates to the mobile component of the application. This system is capable of acquiring and reporting diagnostic information about the application's configuration and performance. |
Remote Vehicle OBEs | 'Remote Vehicle OBEs' represents other connected vehicles that are communicating with the host vehicle. This includes all connected motorized vehicles including passenger cars, trucks, and motorcycles and specialty vehicles (e.g., maintenance vehicles, transit vehicles) that also include the basic 'Vehicle OBE' functionality that supports V2V communications. In CVRIA, this object provides a source and destination for information transfers between connected vehicles. The host vehicle on-board equipment, represented by the Vehicle OBE physical object, sends information to, and receives information from the Remote Vehicle OBEs to model all connected vehicle V2V communications in CVRIA. |
Roadside Equipment | 'Roadside Equipment' (RSE) represents the Connected Vehicle roadside devices that are used to send messages to, and receive messages from, nearby vehicles using Dedicated Short Range Communications (DSRC) or other alternative wireless communications technologies. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers. |
Roadway Traffic Gap Assist | "Roadway Traffic Gap Assist" measures the headway to the next approaching vehicle. Based on programmed thresholds, unsafe gaps are identified and reported via roadside signs. Traffic gaps and associated advisories and warnings are also provided to the RSE for communication to connected vehicles. |
RSE Development System | The system used in a backoffice environment to develop and test the roadside equipment. |
RSE Installation System | The system used to install and configure the roadside equipment. |
RSE Maintenance System | The system used to configure changes and updates to the roadside equipment. This system is capable of acquiring and reporting diagnostic information about the RSE's configuration and performance. |
RSE Traffic Gap Assist | "RSE Traffic Gap Assist" provides advisory information to minor road drivers at a stop-sign controlled intersection to facilitate gap selection to proceed through the intersection. The application can be configured depending on the intersection geometry. It monitors Connected Vehicle traffic on the major road, augmenting infrastructure traffic detectors, to identify and measure traffic gaps. The intersection geometry, measured traffic gaps, and current gap assist sign displays are communicated to the connected vehicle that is navigating the intersection for use in driver advisories and warnings. The application may also collect vehicle size and performance profile from the connected vehicle to optimize the alerts and warnings to the capabilities of the vehicle and driver preferences. |
TMC Traffic Gap Assist | "TMC Traffic Gap Assist" supports remote control and monitoring of traffic gap assist infrastructure equipment. It provides configuration information for the equipped intersection and the operating parameters for the traffic detection system that measures traffic gaps on the major road and the signs and Connected Vehicle communications that provide advisories and warnings to vehicles on the minor road attempting to navigate the intersection. It monitors field equipment operation and reports current status to the operator. |
Traffic Management Center | The 'Traffic Management Center' monitors and controls traffic and the road network. It represents centers that manage a broad range of transportation facilities including freeway systems, rural and suburban highway systems, and urban and suburban traffic control systems. It communicates with ITS Roadway Equipment and Connected Vehicle Roadside Equipment (RSE) to monitor and manage traffic flow and monitor the condition of the roadway, surrounding environmental conditions, and field equipment status. It manages traffic and transportation resources to support allied agencies in responding to, and recovering from, incidents ranging from minor traffic incidents through major disasters. |
Vehicle | The conveyance that provides the sensory, processing, storage, and communications functions necessary to support efficient, safe, and convenient travel. These functions reside in general vehicles including personal automobiles, commercial vehicles, emergency vehicles, transit vehicles, or other vehicle types. |
Vehicle Databus | The 'Vehicle Databus' represents the interface to the vehicle databus (e.g., CAN, LIN, Ethernet/IP, FlexRay, and MOST) that may enable communication between the Vehicle OBE and other vehicle systems to support connected vehicle applications. The vehicle system statuses and/or sensor outputs available on the databus will vary based on the equipment installed on the vehicle and availability on databus. System statuses and sensor outputs may include select vehicle systems and sensors such as accelerometers, yaw rate sensors, and GPS derived location and timing information. In CVRIA, this physical object is used to represent the onboard interactions between the Vehicle OBE and the other systems included in a host vehicle. Note that the vehicle databus interface is not standardized across all vehicle classes. Also, some Vehicle OBE implementations will not have access to the vehicle databus. See 'Vehicle OBE' for more information. |
Vehicle Gap Assist | "Vehicle Gap Assist" uses V2I communications to collect traffic gap information and associated alerts and warnings that are displayed to the driver who is navigating a stop-sign controlled intersection with a major road. |
Vehicle OBE | The Vehicle On-Board Equipment (OBE) provides the vehicle-based processing, storage, and communications functions necessary to support connected vehicle operations. The radio(s) supporting V2V and V2I communications are a key component of the Vehicle OBE. This communication platform is augmented with processing and data storage capability that supports the connected vehicle applications. In CVRIA, the Vehicle OBE includes the functions and interfaces that support connected vehicle applications for passenger cars, trucks, and motorcycles. Many of these applications (e.g., V2V Safety applications) apply to all vehicle types including personal vehicles, commercial vehicles, emergency vehicles, transit vehicles, and maintenance vehicles. From this perspective, the Vehicle OBE includes the common interfaces and functions that apply to all motorized vehicles. |
Includes Roles:
Role | Description |
---|---|
Certifies | An Enterprise verifies that a target Resource meets relevant performance, functional, environmental and quality requirements. |
Constrains | A Resource or Enterprise applies requirements, constraints and associated tests to another Resource. |
Installs | An Enterprise performs the initial delivery, integration and configuration of the target Resource. |
Maintains | An Enterprise administers the hardware and software that comprise the target Resource. |
Member | An Enterprise is part of another larger, target Enterprise. |
Operates | An Enterprise controls the functionality and state of the target Resource. An Enterprise that Operates a resource is considered Responsible. |
Owns | An Enterprise has financial ownership and control over the Resource. An Enterprise that Owns a resource is considered Accountable. |
Includes Coordination:
Coordination | Type | Description |
---|---|---|
Application Installation Data | Information Sharing | Data needed to install the application, including the application executable code and any configuration data. Unidirectional flow. |
Application Interface Specification | Agreement | The definition of an interface between two application components that operate on two distinct pieces of hardware. The Application Interface Specification is specific to the application in question. |
Application Maintenance Data | Information Sharing | Data used to facilitate the upgrade, patching and general health maintenance of an application component. |
Application Performance Data | Information Sharing | Data used to characterize application performance, including such measures as availability, known errors and known uses. |
Application Procurement Agreement | Agreement | An agreement whereupon one entity provides a copy of an application component to another entity. This component is capable of being installed and functioning, according to its requirements that passed through the application's certification process. |
Application Usage Agreement | Agreement | An agreement in which one entity that controls an application component's use gives the other entity the necessary tools and permission to operate that application or application component. |
Backoffice Component Installation Agreement | Agreement | An agreement that grants one party permission to install a backoffice application component on a center-based device controlled by the other party. |
Backoffice Component Maintenance Agreement | Agreement | An agreement in which one entity maintains the operational status of the backoffice component of an application under the control of another entity. This maintenance may include routine and as-needed maintenance, such as software update and configuration, hardware replacement and related system administration activities. |
Device Placement and Operations Agreement | Agreement | An agreement that enables the controller of a physical device to install it (so as to make it operational) at a fixed location controlled by another entity. |
Expectation of Data Provision | Expectation | An expectation where one party believes another party will provide data on a regular and recurring basis, and that that data will be useful to the receiver in the context of the receiver's application. This thus includes some expectation of data fields, timeliness, quality, precision and similar qualities of data. |
Expectation of Information Provision | Expectation | An expectation where one party believes another party will provide it information whenever such information is likely relevant to the recipient. |
Field Component Installation Agreement | Agreement | An agreement that grants one party permission to install a field application component on a roadside device controlled by the other party. |
Field Component Maintenance Agreement | Agreement | An agreement in which one entity maintains the operational status of the field component of an application under the control of another entity. This maintenance may include routine and as-needed maintenance, such as software update and configuration, hardware replacement and related system administration activities. |
Includes | Includes | Indicates that one component is entirely contained within another component. |
Information Exchange Agreement | Agreement | An agreement to exchange information, which may include data or control information; the exact information to be exchanged may vary from agreement to agreement. |
Installation Agreement | Agreement | An agreement whereupon one entity installs an application component on a device controlled by another entity. |
Interface Description | Agreement | Documentation of the interface between two systems, where one system does not have an application component that is part of the application, but does provide and/or receive data and/or information that is used by or sourced from the application. In many cases this is an existing interface used by the application, so the description of the interface already exists and is imposed by the terminator. |
Maintenance Agreement | Agreement | An agreement in which one entity maintains the operational status of a system under the control of another entity. This maintenance may include routine and as-needed maintenance, such as software update and configuration, hardware replacement and related system administration activities. |
Maintenance Data Exchange Agreement | Agreement | An agreement that states one entity will provide data related to maintenance of an application component to the other entity. |
Mobile Component Installation Agreement | Agreement | An agreement whereupon the controller of OBE gives another party permission to install, configure and make operational a component that enables the mobile portion of an application. |
Mobile Component License Agreement | Agreement | An end-user license agreement allowing the operator of the mobile device to use the mobile application component that is part of the application in question. |
Mobile Component Maintenance Agreement | Agreement | An agreement in which one entity maintains the operational status of the mobile component of an application under the control of another entity. This maintenance may include routine and as-needed maintenance, such as software update and configuration, hardware replacement and related system administration activities. |
Operations Agreement | Agreement | An agreement where one entity agrees to operate a device or application on behalf of another, device/application controlling entity. |
Presumption of Correct Operation | Expectation | The assumption made by one party that another party operates their device in a similar and correct fashion. Specific to devices in the transportation environment, this assumption is relevant when devices interact, where one party's device receives information from another's. The operator of the device implicitly trusts that the other device is operating according to a similar set of governing rules as its device. |
RSE Deployment Agreement | Agreement | Agreement to install, configure and make operational roadside equipment, between the provider of that equipment and the entity that controls access to the roadside. May define locations, expectation of power provision, backhaul responsibility and installation restrictions. |
RSE Installation Data | Information Sharing | Data necessary to configure and make RSE operational. Uni-directional. |
RSE Maintenance Data | Information Sharing | Data necessary to modify the operational configuration of RSE; assumes RSE is already configured. Uni-directional. |
RSE Performance Data | Information Sharing | Data that includes metrics of RSE performance. Could include fields such as uptime, packets received/transmitted, distance vector from which packets received, as well as application-specific performance measures. |
RSE Procurement Agreement | Agreement | An agreement whereupon one entity provides roadside equipment to another entity. The RSE is capable of being installed and functioning, according to its requirements that passed through the device's certification process. |
Service Delivery Agreement | Agreement | A relationship where one party agrees to provide a service to the other party. This agreement may specify the expected performance of this service in terms of availability and/or actions/time-type performance specifications. |
Vehicle Data Access Agreement | Agreement | An agreement whereby the party that controls access to on-board vehicle data grants another party the right and ability to access that data. Includes the conditions under which data may be accessed, and specifies the mechanisms, including physical and functional access methods, data formats and any other considerations necessary for the accessing party to acquire data. May also include caveats regarding responsibility for data quality and responsibility for use of the data. |
Vehicle OBE Usage Agreement | Agreement | An agreement that grants one entity permission to use a Vehicle OBE that the other party controls. |
Vehicle Procurement Agreement | Agreement | The exchange of a vehicle for compensation. One entity purchases the vehicle from the other. |
Vehicle Usage Agreement | Agreement | An agreement between the owner of a vehicle and a prospective operator, whereupon the owner allows the operator to use the vehicle. |
Warranty | Agreement | A guarantee or promise made by one entity to another, that provides assurance of the functionality and performance over time of an application component. |
Functional
Includes Processes:
Includes Data Flows:
Physical
SVG Diagram
PNG Diagram
Includes Physical Objects:
Physical Object | Class | Description |
---|---|---|
Driver | Vehicle | The 'Driver' represents the person that operates a vehicle on the roadway. Included are operators of private, transit, commercial, and emergency vehicles where the interactions are not particular to the type of vehicle (e.g., interactions supporting vehicle safety applications). The Driver originates driver requests and receives driver information that reflects the interactions which might be useful to all drivers, regardless of vehicle classification. Information and interactions which are unique to drivers of a specific vehicle type (e.g., fleet interactions with transit, commercial, or emergency vehicle drivers) are covered by separate objects. |
ITS Roadway Equipment | Field | 'ITS Roadway Equipment' represents the ITS equipment that is distributed on and along the roadway that monitors and controls traffic and monitors and manages the roadway itself. In CVRIA, this physical object represents all of the other ITS field equipment that interfaces with and supports the Connected Vehicle Roadside Equipment (RSE). This physical object includes traffic detectors, environmental sensors, traffic signals, highway advisory radios, dynamic message signs, CCTV cameras and video image processing systems, grade crossing warning systems, and ramp metering systems. Lane management systems and barrier systems that control access to transportation infrastructure such as roadways, bridges and tunnels are also included. This object also provides environmental monitoring including sensors that measure road conditions, surface weather, and vehicle emissions. Work zone systems including work zone surveillance, traffic control, driver warning, and work crew safety systems are also included. |
Remote Vehicle OBEs | Vehicle | 'Remote Vehicle OBEs' represents other connected vehicles that are communicating with the host vehicle. This includes all connected motorized vehicles including passenger cars, trucks, and motorcycles and specialty vehicles (e.g., maintenance vehicles, transit vehicles) that also include the basic 'Vehicle OBE' functionality that supports V2V communications. In CVRIA, this object provides a source and destination for information transfers between connected vehicles. The host vehicle on-board equipment, represented by the Vehicle OBE physical object, sends information to, and receives information from the Remote Vehicle OBEs to model all connected vehicle V2V communications in CVRIA. |
Roadside Equipment | Field | 'Roadside Equipment' (RSE) represents the Connected Vehicle roadside devices that are used to send messages to, and receive messages from, nearby vehicles using Dedicated Short Range Communications (DSRC) or other alternative wireless communications technologies. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers. |
Traffic Management Center | Center | The 'Traffic Management Center' monitors and controls traffic and the road network. It represents centers that manage a broad range of transportation facilities including freeway systems, rural and suburban highway systems, and urban and suburban traffic control systems. It communicates with ITS Roadway Equipment and Connected Vehicle Roadside Equipment (RSE) to monitor and manage traffic flow and monitor the condition of the roadway, surrounding environmental conditions, and field equipment status. It manages traffic and transportation resources to support allied agencies in responding to, and recovering from, incidents ranging from minor traffic incidents through major disasters. |
Vehicle Databus | Vehicle | The 'Vehicle Databus' represents the interface to the vehicle databus (e.g., CAN, LIN, Ethernet/IP, FlexRay, and MOST) that may enable communication between the Vehicle OBE and other vehicle systems to support connected vehicle applications. The vehicle system statuses and/or sensor outputs available on the databus will vary based on the equipment installed on the vehicle and availability on databus. System statuses and sensor outputs may include select vehicle systems and sensors such as accelerometers, yaw rate sensors, and GPS derived location and timing information. In CVRIA, this physical object is used to represent the onboard interactions between the Vehicle OBE and the other systems included in a host vehicle. Note that the vehicle databus interface is not standardized across all vehicle classes. Also, some Vehicle OBE implementations will not have access to the vehicle databus. See 'Vehicle OBE' for more information. |
Vehicle OBE | Vehicle | The Vehicle On-Board Equipment (OBE) provides the vehicle-based processing, storage, and communications functions necessary to support connected vehicle operations. The radio(s) supporting V2V and V2I communications are a key component of the Vehicle OBE. This communication platform is augmented with processing and data storage capability that supports the connected vehicle applications. In CVRIA, the Vehicle OBE includes the functions and interfaces that support connected vehicle applications for passenger cars, trucks, and motorcycles. Many of these applications (e.g., V2V Safety applications) apply to all vehicle types including personal vehicles, commercial vehicles, emergency vehicles, transit vehicles, and maintenance vehicles. From this perspective, the Vehicle OBE includes the common interfaces and functions that apply to all motorized vehicles. |
Includes Application Objects:
Application Object | Description | Physical Object |
---|---|---|
Roadway Traffic Gap Assist | "Roadway Traffic Gap Assist" measures the headway to the next approaching vehicle. Based on programmed thresholds, unsafe gaps are identified and reported via roadside signs. Traffic gaps and associated advisories and warnings are also provided to the RSE for communication to connected vehicles. | ITS Roadway Equipment |
RSE Traffic Gap Assist | "RSE Traffic Gap Assist" provides advisory information to minor road drivers at a stop-sign controlled intersection to facilitate gap selection to proceed through the intersection. The application can be configured depending on the intersection geometry. It monitors Connected Vehicle traffic on the major road, augmenting infrastructure traffic detectors, to identify and measure traffic gaps. The intersection geometry, measured traffic gaps, and current gap assist sign displays are communicated to the connected vehicle that is navigating the intersection for use in driver advisories and warnings. The application may also collect vehicle size and performance profile from the connected vehicle to optimize the alerts and warnings to the capabilities of the vehicle and driver preferences. | Roadside Equipment |
TMC Traffic Gap Assist | "TMC Traffic Gap Assist" supports remote control and monitoring of traffic gap assist infrastructure equipment. It provides configuration information for the equipped intersection and the operating parameters for the traffic detection system that measures traffic gaps on the major road and the signs and Connected Vehicle communications that provide advisories and warnings to vehicles on the minor road attempting to navigate the intersection. It monitors field equipment operation and reports current status to the operator. | Traffic Management Center |
Vehicle Gap Assist | "Vehicle Gap Assist" uses V2I communications to collect traffic gap information and associated alerts and warnings that are displayed to the driver who is navigating a stop-sign controlled intersection with a major road. | Vehicle OBE |
Includes Information Flows:
Information Flow | Description |
---|---|
driver information | Regulatory, warning, and guidance information provided to the driver while en route to support safe and efficient vehicle operation. |
driver update information | Information provided to the driver-vehicle interface to inform the driver about current conditions, potential hazards, and the current status of vehicle on-board equipment. The flow includes the information to be presented to the driver and associated metadata that supports processing, prioritization, and presentation by the DVI as visual displays, audible information and warnings, and/or haptic feedback. |
driver updates | Information provided to the driver including visual displays, audible information and warnings, and haptic feedback. The updates inform the driver about current conditions, potential hazards, and the current status of vehicle on-board equipment. |
host vehicle status | Information provided to the connected vehicle on-board equipment from other systems on the vehicle platform. This includes data from on-board sensors, the current status of the powertrain, steering, and braking systems, and status of safety and convenience systems. In implementations where GPS is not integrated into the Vehicle On-Board Equipment, the host vehicle is also the source for data describing the vehicle's location in three dimensions (latitude, longitude, elevation) and accurate time that can be used for time synchronization across the Connected Vehicle environment. |
stop sign gap assist control | Configuration and control of detectors that monitor traffic on the major road and signs that provide stop sign gap assist alerts and warnings to vehicles on the minor road. |
stop sign gap assist info | Intersection and device configuration data and warning parameters and thresholds for the stop sign gap assist application. This flow also supports remote control of the application so the application can be taken offline, reset, or restarted. |
stop sign gap assist RSE status | Stop sign gap assist application status. This includes current operational state and status of the RSE and a log of stop sign gap assist events including alerts and warnings issued. |
stop sign gap assist status | The current operational state and status of the field controller, sensors, and signs that support the stop sign gap assist application. |
traffic gap information | Measured gap to the next approaching vehicle per lane and direction of travel |
traffic situation data | Current, aggregate traffic data collected from connected vehicles that can be used to supplement or replace information collected by roadside traffic detectors. It includes raw and/or processed reported vehicle speeds, counts, and other derived measures. Raw and/or filtered vehicle control events may also be included to support incident detection. |
vehicle location and motion | Data describing the vehicle's location in three dimensions, heading, speed, acceleration, braking status, and size. |
vehicle profile | Information about a vehicle such as vehicle make and model, fuel type, engine type, average emissions, average fuel consumption, passenger occupancy, or other data that can be used to classify vehicle eligibility for access to specific lanes, road segments, or regions. |
vehicle signage data | In-vehicle signing data that augments regulatory, warning, and informational road signs and signals. The information provided would include static sign information (e.g., stop, curve warning, guide signs, service signs, and directional signs) and dynamic information (e.g., current signal states, grade crossing information, local traffic and road conditions, detours, advisories, and warnings). |
vehicle signage local data | Information provided by adjacent field equipment to support in-vehicle signing of dynamic information that is currently being displayed to passing drivers. This includes the dynamic information (e.g., current signal states, grade crossing information, local traffic and road conditions, detours, advisories, parking availability, etc.) and control parameters that identify the desired timing, duration, and priority of the signage data. |
Application Interconnect Diagram
SVG Diagram
PNG Diagram
Application Triples
Requirements
Need | Requirement | ||
---|---|---|---|
N3.057 | Stop Sign Gap Assist (SSGA) needs to alert the driver of the vehicle on the minor road of traffic with gaps too small to permit safe entrance into the intersection. | 3.121 | Stop Sign Gap Assist (SSGA) shall acquire the performance characteristics of the vehicle on the minor road. |
3.122 | SSGA shall determine for each gap whether it is safe or unsafe for the vehicle on the minor road. | ||
3.123 | SSGA shall alert the driver of unsafe gaps between vehicles on the major road. | ||
N3.058 | SSGA needs to identify and classify gaps as safe or unsafe, so that it can properly advise the driver. | 3.124 | SSGA shall identify gaps between vehicles on the major road. |
3.125 | SSGA shall compute the size of gaps. | ||
3.126 | SSGA shall compute the dynamic change in gap size (so that it may predict the gap at the point where it may matter to the vehicle on the minor road). | ||
N3.059 | SSGA needs to monitor the traffic on the major road (including the median) so it can identify gaps. | 3.127 | SSGA shall be able to acquire vehicle telematics data. |
3.128 | SSGA shall be able to receive vehicle location information from roadside sensors. | ||
3.129 | SSGA shall be able to receive vehicle speed information from roadside sensors. | ||
3.130 | SSGA shall be able to receive vehicle heading information from roadside sensors. | ||
N3.104 | Vehicle to Infrastructure (V2I) Safety applications need to assess their own performance, to determine errors and avoid failures when critical components fail. | 3.207 | Vehicle to Infrastructure (V2I) Safety applications shall analyze their own performance and enter fail-safe mode (a mode such that the application cannot provide information or perform actions that affect its host) when critical components fail. |
3.208 | V2I Safety applications shall notify the driver when onboard components are offline | ||
3.209 | V2I Safety applications shall notify its owner/operator when onboard components are offline. | ||
N3.105 | V2I Safety applications need to broadcast the performance of their host vehicle, to enable V2I applications that rely on knowing the location and/or trajectories of other vehicles. | 3.210 | V2I Safety applications shall broadcast the location, speed, acceleration, heading, steering wheel angle, brake system status, vehicle size and path history of host vehicles. |
N3.106 | V2I Safety applications need to have a common time source so that location and projected positions may be synchronized. | 3.211 | V2I Safety applications shall have a common time source. |
N3.107 | V2I Safety applications need to have positioning accurate enough to create alerts and/or warnings when warranted. | 3.212 | V2I Safety applications shall provide a means for any System component to determine its geographic position, in three dimensions. |
N3.108 | V2I Safety applications need to have positioning accurate enough to avoid false positive alerts and/or warnings. | 3.213 | V2I Safety applications shall provide position data together with a measure of the accuracy of the geographic position. |
Related Sources
- Accelerated Vehicle to Infrastructure (V2I) Safety Applications Concept of Operations Document, B, 3/26/2013
Security
In order to participate in this application, each physical object should meet or exceed the following security levels.
Physical Object Security | ||||
---|---|---|---|---|
Physical Object | Confidentiality | Integrity | Availability | Security Class |
Security levels have not been defined yet. |
In order to participate in this application, each information flow triple should meet or exceed the following security levels.
Information Flow Security | |||||
---|---|---|---|---|---|
Source | Destination | Information Flow | Confidentiality | Integrity | Availability |
Basis | Basis | Basis | |||
Security levels have not been defined yet. |